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1. Splitting Properties

1.1 Notations and Facts
Let X be a compact Riemann surface, E be a holomorphic vector bundle over X and F ⊂ E be a
holomorphic subbundle. Recall that by definition F is a submanifold of E.

One can define the quotient bundle:

Theorem 1.1.1 There exists a unique holomorphic vector bundle structure on

E/F :=
⊔
x∈X

(Ex/Fx)→ X

which satisfies the following property: each homomorphism between holomorphic vector
bundles f : E → G which vanishes on F induces a homomorphism between holomorphic vector
bundles f : E/F → G.

Then we have a short exact sequence:

0 → F i→ E
p→ G := E/F → 0

Tensoring with the dual bundle G∗, we obtain another short exact sequence

0 → Hom(G,F)
i∗→ Hom(G,E)

p∗→ End(G)→ 0

since the tensor functor for the category of vector bundles is exact.
This short exact sequence of vector bundles induces a long exact sequnce of corrsponding

cohomology groups

0 → HomX(G,F)→ HomX(G,E)→ EndX(G)→ H1(Hom(G,F))→ ···

Now we turn to prove some properties that will be used later.
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1.2 Statements and proofs

Theorem 1.2.1 E ≃F⊕G if and only if there exists a homomorphism of vector bundles f : G→E

such that the composition G
f→ E → G is the identity map

Proof. If E ≃ F ⊕G, then a such homomorphism abviously exists.
Conversely, we consider the map

T : E → F ⊕G,(x,e) 7→ (x, i−1(e− f (p(e)))⊕g(e))

we shall verify that it is a map between vector bundles (trivial), it is holomorphic (since F is a
submanifold and i is the nature imbedding) and it is bijective (trivial). ■

Theorem 1.2.2 If H1(Hom(G,F)) = 0, then E ≃ F ⊕G.

Proof. By exactness, HomX(G,E)→ EndX(G) is surjective. In particular, there exists a homomor-

phism of vector bundles f : G → E such that the composition G
f→ E → G is the identity map, and

the previous theorem applies. ■



2. Riemann-Roch for Vector Bundles

2.1 Case of Line Bundle
Recall that we have a bijective correspondence between isomorphic classes of holomorphic line bun-
dle and equivalent classes of divisor, under this correspondence, the sheaf of germs of holomorphic
sections of a holomorphic line bundle L can be identified with OD for the corresponding divisor D.

Note hi(L) the dimension of the i-th Čech cohomology group associated to the sheaf of germs of
holomorphic sections of L. This notation will also be used later for vector bundles of higher rank, by
finiteness theorem hi < ∞, i = 0,1. By the known version of Riemann-Roch theorem, we obtain the
Riemann-Roch theorem for line bundle:

Theorem 2.1.1 — Riemann-Roch for line bundles. For a holomorphic line bundle L, we have

h0(L)−h1(L) = degL−1+g

where g is the genus of the given Riemann surface and degL is the degree of L, defined as the
degree of the corresponding divisor.

2.2 General Case
In this section, we shall generalise the Riemann-Roch theorem to holomorphic vector bundles of
higher rank.

Definition 2.2.1 For a holomorphic vector bundle E of rank r, we define its determinant line
bundle

det(E) := ∧rE

and its degree degE := degdet(E).

We easily see that
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{
det(A⊕B) = det(A)⊗det(B)
det(A⊗B) =

⊗r(B) det(A)
⊗r(A) det(B).

Moreover, for the exact sequence in the previous section, we have

degE = degF +degG

the proof is simple if we write down the transition map as up-triangularly blocked matrix.

Theorem 2.2.1 Every holomorphic vector bundle of rank> 1 contains a line bundle as subbundle.

Proof. By finiteness theorem, one can proof that every holomorphic vector bundle E of positive rank
has a global meromorphic section s which does not vanish identically. (c.f.GTM81,29.17)

For the rest, see R.C.Gunning2, p61,Lemma11:
Lemma 2.2.2 Let Ψ be a holomorphic vector bundle of rank m > 1 over a Riemann surface M and
F a non-trivial meromorphic section of Ψ. Then Ψ has a line subbundle ψ with degψ = deg(F).

Proof. Let (Uα) be a covering of local trivialization, Ψαβ be the corresponding transition matrix
and (Fα) represent the section F. We have

Fα(p) = Ψαβ (p)Fβ (p),∀p ∈Uα ∩Uβ .

By refining the covering, we can suppose that Fα is holomorphic and non-singular (not all
component vanish) in Uα except at (at most) one point.

By refining again, suppose all Uα are coordinate neighborhoods with coordinate zα and the
exceptional point is the origin zα = 0. Then there exists rα ∈ Z s.t. zrα

α Fα(zα) is holomorphic and
non-singular on Uα .

By refining again if needed, there is a holomorphic non-singular matrix valued function Ψα s.t.

Ψαzrα

α Fα = e1,

where

e1 =


1
0
...
0

 .

Now we consider the equivalent transition matrix Ψ′
αβ

:= ΨαΨαβ Ψ
−1
β

, under these transition
map, the section F is expressed as

F ′
α = ΨαFα = z−rα

α e1

Then, in Uα ∩Uβ , we have
z−rα

α e1 = Ψ
′
αβ

zβ z
−rβ

β
e1,

thus the matrix Ψ′
αβ

has the form 
ψα ⋆ · · · ⋆
0 ⋆ · · · ⋆
...

...
. . .

...
0 ⋆ · · · ⋆


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then ψα defined a line subbundle ψ with section F, hence degψ = deg(F). ■

■

Theorem 2.2.3 — Riemann-Roch for vector bundles. Let E be holomorphic vector bundle of
rank r, then

h0(E)−h1(E) = degE − r(g−1).

Proof. By induction on r. It suffices to show that for the exact sequence in the previous section with
F a line bundle, we have

h0(E)−h1(E) = (h0(F)−h1(F))+(h0(G)−h1(G))

by inducing long exact sequence, it suffices to show that h2(L) = 0 for any line bundle L. See
R.C.Gunning1, p74, Theorem8.

(Fine sheaf, fine resolution, Dolbeault’s theorem for fine resolution. c.f. R.C.Gunning1, p37,
Theorem3, or Section 4.5 of book of MEI Jiaqiang) ■



3. Grothendieck’s Theorem

3.1 Case of Rank 2
From now on, we suppose that X = P1. First, recall a vanishing theorem:

Theorem 3.1.1 L is a holomorphic line bundle, then

degL ≤−1 =⇒ h0(L) = 0; degL ≥−1 =⇒ h1(L) = 0.

Now we prove the Grothendieck’s theorem for rank 2 holomorphic vector bundles:
Lemma 3.1.2 Let E be a rank 2 holomorphic vector bundle, then E is isomorphic to a direct sum of
line bundles.

Proof. By tensoring a line bundle, we can suppose without lost of generality that degE = 0 or
degE =−1. Then it follows from the Riemann-Roch theorem that h0(E) ̸= 0, which implies that
there is a line subbundle of non-negative degree (correspondent to a non-trivial holomorphic section).

We take the exact sequence as in the first section and we can verify that Theorem1.2.2 applies by
using the previous vanishing theorem. ■

3.2 General Case

Theorem 3.2.1 Every holomorphic vector bundle over P1 splits to direct sum of line bundles, the
decomposition is unique up to permutation and isomorphism.

Proof. We first prove the existence of decomposition by induction.
By Riemann-Roch we can show that degree of line subbundle of vector bundle E is up-bounded

by h0(E)−1. (For line subbundle L⊂E, since H0(L)⊂H0(E), we have degL+1= h0(L)−h1(L)≤
h0(E).) Thus, we can take a line subbundle of E with maximal degree, and we consider the exact
sequence

0 → L → E → E/L ≃
r−1⊕
i=1

Li → 0
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by hypothesis of induction. We claim that degLi ≤ degL and hence h1(L∗
i ⊗L) = 0 and the

splitting property applies.
Now we turn to prove the claim: consider the exact sequence

0 → L → L̃i → Li → 0

where L̃i is the preimage of L under the projection map. Apply the conclusion for the case of
rank 2, L̃i contains a line subbundle of degree

≥ deg L̃i

2
,

since L is a line subbundle of E with maximal degree, we have

degL ≥ deg L̃i

2

thus degLi ≤ degL.
By tensoring the dual bundle and comparing h0 we can prove that the line bundle of highest

degree in two decompositions must coincide. Repeating this argument, we can show the uniqueness
of decomposition. ■
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