Grothendieck's Classification Theorem of Vector Bundles over the Riemann Sphere

Seminar Notes

Contents

1	Splitting Properties	3
1.1	Notations and Facts	3
1.2	Statements and proofs	4
2	Riemann-Roch for Vector Bundles	5
2.1	Case of Line Bundle	5
2.2	General Case	5
3	Grothendieck's Theorem	8
3.1	Case of Rank 2	8
3.2	General Case	8

1. Splitting Properties

1.1 Notations and Facts

Let *X* be a compact Riemann surface, *E* be a holomorphic vector bundle over *X* and $F \subset E$ be a holomorphic subbundle. Recall that by definition *F* is a submanifold of *E*.

One can define the quotient bundle:

Theorem 1.1.1 There exists a unique holomorphic vector bundle structure on

$$E/F := \bigsqcup_{x \in X} (E_x/F_x) \to X$$

which satisfies the following property: each homomorphism between holomorphic vector bundles $f: E \to G$ which vanishes on F induces a homomorphism between holomorphic vector bundles $\overline{f}: E/F \to G$.

Then we have a short exact sequence:

$$0 \to F \xrightarrow{i} E \xrightarrow{p} G := E/F \to 0$$

Tensoring with the dual bundle G^* , we obtain another short exact sequence

$$0 \to Hom(G,F) \xrightarrow{i^*} Hom(G,E) \xrightarrow{p^*} End(G) \to 0$$

since the tensor functor for the category of vector bundles is exact.

This short exact sequence of vector bundles induces a long exact sequece of corrsponding cohomology groups

$$0 \rightarrow Hom_X(G,F) \rightarrow Hom_X(G,E) \rightarrow End_X(G) \rightarrow H^1(Hom(G,F)) \rightarrow \cdots$$

Now we turn to prove some properties that will be used later.

1.2 Statements and proofs

Theorem 1.2.1 $E \simeq F \oplus G$ if and only if there exists a homomorphism of vector bundles $f: G \to E$ such that the composition $G \xrightarrow{f} E \to G$ is the identity map

Proof. If $E \simeq F \oplus G$, then a such homomorphism abviously exists. Conversely, we consider the map

$$T: E \to F \oplus G, (x, e) \mapsto (x, i^{-1}(e - f(p(e))) \oplus g(e))$$

we shall verify that it is a map between vector bundles (trivial), it is holomorphic (since F is a submanifold and i is the nature imbedding) and it is bijective (trivial).

Theorem 1.2.2 If $H^1(Hom(G,F)) = 0$, then $E \simeq F \oplus G$.

Proof. By exactness, $Hom_X(G, E) \to End_X(G)$ is surjective. In particular, there exists a homomorphism of vector bundles $f: G \to E$ such that the composition $G \xrightarrow{f} E \to G$ is the identity map, and the previous theorem applies.

2.1 Case of Line Bundle

Recall that we have a bijective correspondence between isomorphic classes of holomorphic line bundle and equivalent classes of divisor, under this correspondence, the sheaf of germs of holomorphic sections of a holomorphic line bundle *L* can be identified with \mathcal{O}_D for the corresponding divisor *D*.

Note $h^i(L)$ the dimension of the *i*-th Čech cohomology group associated to the sheaf of germs of holomorphic sections of *L*. This notation will also be used later for vector bundles of higher rank, by finiteness theorem $h^i < \infty, i = 0, 1$. By the known version of Riemann-Roch theorem, we obtain the Riemann-Roch theorem for line bundle:

Theorem 2.1.1 — Riemann-Roch for line bundles. For a holomorphic line bundle *L*, we have

$$h^{0}(L) - h^{1}(L) = \deg L - 1 + g$$

where g is the genus of the given Riemann surface and deg L is the degree of L, defined as the degree of the corresponding divisor.

2.2 General Case

In this section, we shall generalise the Riemann-Roch theorem to holomorphic vector bundles of higher rank.

Definition 2.2.1 For a holomorphic vector bundle E of rank r, we define its determinant line bundle

$$\det(E) := \wedge^r E$$

and its degree $\deg E := \deg \det(E)$.

We easily see that

$$\begin{cases} \det(A \oplus B) = \det(A) \otimes \det(B) \\ \det(A \otimes B) = \bigotimes^{r(B)} \det(A) \bigotimes^{r(A)} \det(B). \end{cases}$$

Moreover, for the exact sequence in the previous section, we have

$$\deg E = \deg F + \deg G$$

the proof is simple if we write down the transition map as up-triangularly blocked matrix.

Theorem 2.2.1 Every holomorphic vector bundle of rank> 1 contains a line bundle as subbundle.

Proof. By finiteness theorem, one can proof that every holomorphic vector bundle E of positive rank has a global meromorphic section s which does not vanish identically. (c.f.GTM81,29.17)

For the rest, see R.C.Gunning2, p61,Lemma11:

Lemma 2.2.2 Let Ψ be a holomorphic vector bundle of rank m > 1 over a Riemann surface M and F a non-trivial meromorphic section of Ψ . Then Ψ has a line subbundle ψ with deg $\psi = \text{deg}(F)$.

Proof. Let (U_{α}) be a covering of local trivialization, $\Psi_{\alpha\beta}$ be the corresponding transition matrix and (F_{α}) represent the section *F*. We have

$$F_{\alpha}(p) = \Psi_{\alpha\beta}(p)F_{\beta}(p), \forall p \in U_{\alpha} \cap U_{\beta}.$$

By refining the covering, we can suppose that F_{α} is holomorphic and non-singular (not all component vanish) in U_{α} except at (at most) one point.

By refining again, suppose all U_{α} are coordinate neighborhoods with coordinate z_{α} and the exceptional point is the origin $z_{\alpha} = 0$. Then there exists $r_{\alpha} \in \mathbb{Z}$ s.t. $z_{\alpha}^{r_{\alpha}}F_{\alpha}(z_{\alpha})$ is holomorphic and non-singular on U_{α} .

By refining again if needed, there is a holomorphic non-singular matrix valued function Ψ_{α} s.t.

$$\Psi_{\alpha} z_{\alpha}^{r_{\alpha}} F_{\alpha} = e_1$$

where

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Now we consider the equivalent transition matrix $\Psi'_{\alpha\beta} := \Psi_{\alpha}\Psi_{\alpha\beta}\Psi_{\beta}^{-1}$, under these transition map, the section *F* is expressed as

$$F_{\alpha}' = \Psi_{\alpha} F_{\alpha} = z_{\alpha}^{-r_{\alpha}} e_1$$

Then, in $U_{\alpha} \cap U_{\beta}$, we have

$$z_{\alpha}^{-r^{\alpha}}e_{1}=\Psi_{\alpha\beta}^{\prime}z_{\beta}z_{\beta}^{-r_{\beta}}e_{1}$$

thus the matrix $\Psi'_{\alpha\beta}$ has the form

$$\left(\begin{array}{cccc} \psi_{\alpha} & \star & \cdots & \star \\ 0 & \star & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \star & \cdots & \star \end{array}\right)$$

then ψ_{α} defined a line subbundle ψ with section *F*, hence deg $\psi = \text{deg}(F)$.

Theorem 2.2.3 — Riemann-Roch for vector bundles. Let E be holomorphic vector bundle of rank r, then

$$h^{0}(E) - h^{1}(E) = \deg E - r(g-1).$$

Proof. By induction on r. It suffices to show that for the exact sequence in the previous section with F a line bundle, we have

$$h^{0}(E) - h^{1}(E) = (h^{0}(F) - h^{1}(F)) + (h^{0}(G) - h^{1}(G))$$

by inducing long exact sequence, it suffices to show that $h^2(L) = 0$ for any line bundle *L*. See R.C.Gunning1, p74, Theorem8.

(Fine sheaf, fine resolution, Dolbeault's theorem for fine resolution. c.f. R.C.Gunning1, p37, Theorem3, or Section 4.5 of book of MEI Jiaqiang)

7

3. Grothendieck's Theorem

3.1 Case of Rank 2

From now on, we suppose that $X = \mathbb{P}^1$. First, recall a vanishing theorem:

Theorem 3.1.1 *L* is a holomorphic line bundle, then

$$\deg L \leq -1 \implies h^0(L) = 0; \qquad \deg L \geq -1 \implies h^1(L) = 0.$$

Now we prove the Grothendieck's theorem for rank 2 holomorphic vector bundles:

Lemma 3.1.2 Let E be a rank 2 holomorphic vector bundle, then E is isomorphic to a direct sum of line bundles.

Proof. By tensoring a line bundle, we can suppose without lost of generality that deg E = 0 or deg E = -1. Then it follows from the Riemann-Roch theorem that $h^0(E) \neq 0$, which implies that there is a line subbundle of non-negative degree (correspondent to a non-trivial holomorphic section).

We take the exact sequence as in the first section and we can verify that Theorem1.2.2 applies by using the previous vanishing theorem.

3.2 General Case

Theorem 3.2.1 Every holomorphic vector bundle over \mathbb{P}^1 splits to direct sum of line bundles, the decomposition is unique up to permutation and isomorphism.

Proof. We first prove the existence of decomposition by induction.

By Riemann-Roch we can show that degree of line subbundle of vector bundle *E* is up-bounded by $h^0(E) - 1$. (For line subbundle $L \subset E$, since $H^0(L) \subset H^0(E)$, we have deg $L + 1 = h^0(L) - h^1(L) \le h^0(E)$.) Thus, we can take a line subbundle of *E* with maximal degree, and we consider the exact sequence

$$0 \to L \to E \to E/L \simeq \bigoplus_{i=1}^{r-1} L_i \to 0$$

by hypothesis of induction. We claim that $\deg L_i \leq \deg L$ and hence $h^1(L_i^* \otimes L) = 0$ and the splitting property applies.

Now we turn to prove the claim: consider the exact sequence

$$0 \rightarrow L \rightarrow \tilde{L}_i \rightarrow L_i \rightarrow 0$$

where \tilde{L}_i is the preimage of *L* under the projection map. Apply the conclusion for the case of rank 2, \tilde{L}_i contains a line subbundle of degree

$$\geq \frac{\deg \tilde{L}_i}{2},$$

since L is a line subbundle of E with maximal degree, we have

$$\deg L \geq \frac{\deg \tilde{L_i}}{2}$$

thus deg $L_i \leq \deg L$.

By tensoring the dual bundle and comparing h^0 we can prove that the line bundle of highest degree in two decompositions must coincide. Repeating this argument, we can show the uniqueness of decomposition.