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1. Harmonic Forms

1.1 Complex Conjugation and the ⋆-operator
Let X be a Riemann surface.

Given an 1-form ω ∈ E (1)(X), we can, locally, write it as

ω = ∑
j

f jdg j, f j,g j ∈ E (X),

and then we define its complex conjugation as:

Definition 1.1.1 — Complex Conjugation.

ω̄ := ∑
j

f̄ jdḡ j

It is easy to see that this definition is independent of choice of local representation of ω .

Definition 1.1.2 We give the following related definitions:
A differentiable 1−form ω ∈ E (1)(X) is called real if ω = ω̄ .
The real part of ω ∈ E (1)(X) is

Re(ω) :=
ω + ω̄

2
.

An 1-form is said to be anti-holomorphic if it is the complex conjugation of some holomorphic
1-form. The space of all anti-holomorphic 1-forms is noted Ω̄(X).

We also know that ω can be uniquely decomposed as

ω = ω1 +ω2,ω1 ∈ E 1,0(X),ω2 ∈ E 0,1(X).

With this decomposition, We introduce the ⋆-operator:
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Definition 1.1.3 — The ⋆-operator.

⋆ω := i(ω̄1 − ω̄2).

Fact 1.1.1 Let ω ∈ E (1)(X),ω1 ∈ E 1,0(X)ω2 ∈ E 0,1(X) and f ∈ E (X), then we have:
1. The ⋆-operator is an R-linear isomorphism of E (1)(X) mapping E 0,1(X) to E 1,0(X) and vice

versa.
2. ⋆⋆ω =−ω, ¯⋆ω = ⋆ω̄,
3. d⋆ (ω1 +ω2) = id′ω̄1 − id′′ω̄2,
4. ⋆d′ f = id′′ f̄ ,⋆d′′ f = id′ f̄ ,
5. d⋆d f = 2id′d′′ f̄ .

1.2 The deRham-Hodge Theorem
Definition 1.2.1 — Harmonic Forms. The 1-form ω ∈ E (1)(X) is called harmonic if

dω = d⋆ω = 0.

The vector space of all harmonic 1-form is noted Harm1(X).

By the above facts we can easily prove the following theorem:

Theorem 1.2.1 For ω ∈ E (1)(X), the following conditions are equivalent:
(1) ω is harmonic,
(2) d′ω = d′′ω = 0,
(3) ω = ω1 +ω2 where ω1 ∈ Ω(X) and ω2 ∈ Ω̄(X),
(4) For all a ∈ X there exists an open neighborhood U of a and a harmonic function f on U

such that ω = d f .

By this theorem we can write

Harm1(X) = Ω(X)⊕ Ω̄(X),

thus if X is compact of genus g, then

dimHarm1(X) = 2g.

From now on we suppose that X is compact.

Definition 1.2.2 — Scalar Product in E (1)(X). For ω1,ω2 ∈ E (1)(X),

< ω1,ω2 >:=
∫∫
X

ω1 ∧⋆ω2.

It is easy to verify that this scalar product is well-defined.
Fact 1.2.2 The four spaces d′E (X),d′′E (X),Ω(X) and Ω̄(X) are pairwise orthogonal.

R Hint for proof: use the fact ∫∫
X

dω = 0.
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Fact 1.2.3 The two spaces dE (X) and ⋆dE (X) are orthogonal and

dE (X)⊕⋆dE (X) = d′E (X)⊕d′′E (X).

R Hint for proof: recall the fact 1.1.1.4.

The above discussion gives the following facts:

Theorem 1.2.4 An exact and harmonic 1-form on a compact Riemann surface vanishes and all
harmonic functions on a compact Riemann surface is constant.

and then useful fact follows:
Fact 1.2.5 Suppose σ ∈ Harm1(X) and ω ∈ Ω(X), then:

σ = 0 if and only if for every closed curve γ on X one has∫
γ

σ = 0;

ω = 0 if and only if for every closed curve γ on X one has∫
γ

Re(ω) = 0.

By combining Dolbeault’s Theorem and Fact 1.2.2 and by comparing dimensions, we obtain
that:

Theorem 1.2.6 There is an orthogonal decomposition

E 0,1(X) = d′′E (X)⊕ Ω̄(X).

This theorem implies directly a method to justify the existence of solution for the equation
d′′ f = σ where σ ∈ E 0,1(X) is given:

Theorem 1.2.7 Suppose that σ ∈ E 0,1(X), then the equation d′′ f = σ has a solution f ∈ E (X) if
and only if for all ω ∈ Ω(X), one has ∫∫

X

σ ∧ω = 0.

Taking complex conjugates in Theorem 1.2.6 and then applying Facts 1.2.2 and 1.2.3, we have:

Theorem 1.2.8 There is an orthogonal decomposition

E (1)(X) = ⋆dE (X)⊕dE (X)⊕Harm1(X).

One can also prove that

Theorem 1.2.9
ker

(
E (1)(X)

d→ E (2)(X)
)
= dE (X)⊕Harm1(X).

Combine this theorem with deRham’s Theorem, we obtain finally the deRham-Hodge Theorem:
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Theorem 1.2.10 For a compact Riemann surface X , we have

H1(X ,C)≃ Rh1(X)≃ Harm1(X).

R it allows us to compute the first Betti number of X :

b1(X) := dimH1(X ,C) = 2g,

where g is the genus of X .

1.3 The "Main Theorem"
Following the above discussion, we state and prove the following theorem (the "Main Theorem" in
Donaldson’s book Riemann Sur f aces):

Theorem 1.3.1 Let X be a compact Riemann surface and ω ∈ E (2)(X), then the equation

d′d′′ f = ω

has a solution f ∈ E (X) if and only if ∫∫
X

ω = 0.

Proof. From Theorem 1.2.6 we obtain that

dE 0,1(X) = d′d′′E (X).

hence by Dolbeault’s Theorem and Serre’s Duality Theorem we have

E (2)(X)/d′d′′E (X)≃ E (2)(X)/dE 0,1(X)≃ E (2)(X)/dE 1,0(X)≃ H1(X ,Ω)≃ H0(X ,O)≃ C.

We view the integration as a linear form on E (2)(X)/d′d′′E (X) which is (well defined and)
non-zero, hence an isomorphism, and the result follows. ■



2. Abel’s Theorem: Incomplete Version

We always denote X a compact Riemann surface, g its genus and D ∈ Div(X) a divisor on X .

2.1 Solution and Weak Solution of a Divisor
Definition 2.1.1 — Solution. A solution of D is a meromorphic function f ∈ M (X) such that
( f ) = D.

R If D has a solution, then degD = 0 by Residue Theorem.

In another word, a solution is a meromorphic function with asymptotic behavior at certain points
described by the divisor.

It is not easy for a divisor to have a solution, but we will prove that if degD = 0, one can always
find a function with asymptotic behavior described by D, such a function is called a weak solution,
as we are going to define:

Definition 2.1.2 — Weak Solution. Note

XD := {x ∈ X : D(x)≥ 0}.

A weak solution of D is a smooth function f on XD such that for all a ∈ X there exists a
coordinate neighborhood (U,z) with z(a) = 0 and a function ψ ∈ U with ψ(a) ̸= 0, such that

f = ψzk on U ∩XD, where k = D(a).

R If f1 (resp. f2) is a weak solution of D1 (resp. D2), then f1 f2 is a weak solution of D1 +D2.

Lemma 2.1.1 Suppose a1, · · · ,an ∈ X distinct and k1, · · · ,kn ∈ Z. Suppose D is the divisor on X
with D(a j) = k j, j = 1, · · · ,n and D(a) = 0 otherwise. Let f be a weak solution of D. Then for all
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g ∈ E (X), we have
1

2πi

∫∫
X

d f
f
∧dg =

n

∑
j=1

k jg(a j).

R Hint for proof: construct bump finctions on neighborhoods of a j and use Stokes’ Theorem.

2.2 Chains and Cycles
Definition 2.2.1 — 1-chain. We define the 1-chain group C1(X) as the free abelian group
generated by all curves on X . Elements of this group are called 1-chains.

For an element c ∈C1(X), we can write

c =
k

∑
j=1

n jc j,

where n j ∈ Z and c j are curves.
One can naturally define integral of a closed 1-form over a 1-chain:

Definition 2.2.2 — Integral. For c ∈C1(X) and a closed form ω ∈ E (1)(X),

∫
c

ω :=
k

∑
j=1

n j

∫
c j

ω.

To introduce the concept of 1-cycles, we should define a boundary operator:

Definition 2.2.3 — Boundary Operator. For a curve c on X , set ∂c = 0 be the zero divisor if
c(0) = c(1), otherwise let ∂c be the divisor with +1 at c(1) and −1 at c(0) and zero at all other
points. This definition can be extened to C1(X), hence induces a homomorphism of group

∂ : C1(X)→ Div(X).

Observation 2.2.1 Im∂ = {D ∈ Div(X) : degD = 0}.
Definition 2.2.4 — 1-Cycles. The 1-cycle group of X is defined as Z1(X) := ker∂ .

Theorem 2.2.2 For an 1-chain c ∈ Div(X), there exists a weak solution of ∂c such that, for all
closed form ω ∈ E (1)(X) one has ∫

c

ω =
1

2πi

∫∫
X

d f
f
∧ω.

R Hint for proof: since [0,1] is compact, using the remark after Definition 2.1.2, it suffices to
consider the case where c is a curve and c([0,1]) is contained in a coordinate neighborhood
biholomorphic to the unit disk. In this case, construct directly the weak solution f with help of
a bump function.
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2.3 Abel’s Theorem: Incomplete Version

Theorem 2.3.1 If there exists a 1-chain c ∈C1(X) with ∂c = D such that for all ω ∈ Ω(X) we
have ∫

c

ω = 0,

then D has a solution.

Proof. Take a weak solution given by Theorem 2.2.2, we have for all ω ∈ Ω(X),

0 =
∫
c

ω =
1

2πi

∫∫
X

d f
f
∧ω =

1
2πi

∫∫
X

d′′ f
f

∧ω.

Hence by Theorem 1.2.7, there exists a function g ∈ E (X) such that

d′′g =
d′′ f

f
∧ω.

Then we verify that F := e−g f is a solution of D. ■

R In fact, if D has a solution, one can conclude that there exists a 1-chain c ∈C1(X) with ∂c = D
such that for all ω ∈ Ω(X) we have ∫

c

ω = 0.

We will prove it later.



3. Riemann Surfaces of Genus One

3.1 Classification of Tori
For two tori C/Γ1 and C/Γ2, suppose that

Γ j = a jZ⊕b jZ, j = 1,2.

Let
γ j :=

a j

b j
, j = 1,2.

We have already obtained the following classification result:

Theorem 3.1.1 C/Γ1 ≃ C/Γ2 if and only if there exists a matrix(
g11 g12
g21 g22

)
∈ GL2(Z)

such that
γ1 =

g11γ2 +g12

g21γ2 +g22

3.2 Period Lattices and Jacobi Variety
For a compact Riemann surface of genus g ≥ 1, take a basis ω1, · · · ,ωg of Ω(X). We define the
period lattice of X with respect to this basis in the following way:

Definition 3.2.1 — Period Lattices.

Per(ω1, · · · ,ωg) :=


∫

α

ω1, · · · ,
∫
α

ωg

 : α ∈ π1(X)

 .

We shall show that the period lattice is a lattice in Cg.



3.2 Period Lattices and Jacobi Variety 11

Lemma 3.2.1 There exists g distinct points a1, · · · ,ag ∈ X such that every holomorphic 1-form
vanishing at all a j is identically zero.

Proof. For a ∈ X , notice that
Ha := {ω ∈ Ω(X) : ω(a) = 0}

is a subspace of Ω(X) with codimension 0 or 1, since the intersection of all Ha is zero and

dimΩ(X) = g,

the result follows. ■

Theorem 3.2.2 Γ := Per(ω1, · · · ,ωg) is a lattice in Cg.

In the proof, we will admit and use the following theorem:

Theorem 3.2.3 A subgroup Γ ⊂ CN is a lattice precisely if both of the following conditions hold:
(1) Γ is discrete.
(2) Γ can R-generate CN .

Proof of Theorem 3.2.2. Chose a1, · · · ,ag as in lemma 3.2.1 and take disjoint simply connected
coordinate neighborhoods (U j,z j) of a j with z j(a j) = 0 and

ωi = φi jdz j on U j.

First, show that Γ is discrete: by lemma 3.2.1, the matrix

A := (φi, j(a j))1≤i, j≤g

has rank g. Now we define a mapping

F : U1 ×·· ·×Ug → Cg

as follows:

F(x1, · · · ,xg) :=

 g

∑
j=1

x j∫
a j

ω1, · · · ,
g

∑
j=1

x j∫
a j

ωg

 .

Clearly F is holomorphic and its Jacobian at a = (a1, · · · ,ag) is the invertible matrix A. Hence
we can suppose that F is a diffeomorphism and

W := F(U1 ×·· ·×Ug)

is a neighborhood of F(a) = 0. It suffices to show that Γ∩W = {0}.
Suppose to the contrary that there exists a point

x = (x1, · · · ,xg) ∈U1 ×·· ·×Ug,x ̸= a

such that F(x) ∈ Γ. By Theorem 2.3.1 one can take a solution f of the divisor

x1 + · · ·+ xg −a1 −·· ·−ag
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Let c j be the residue of f at a j, since a ̸= x, there is some j such that c j ̸= 0. By Residue
Theorem,

0 = Res( f ωi) =
k

∑
j=1

c jφi, j(a j), i = 1, · · · ,g.

This is impossible since (φi, j(a j))1≤i, j≤g has rank g.
Then, we show that Γ can R-generate Cg: otherwise, we could find a non-trivial R-linear form

on Cg vanishing on Γ, represent this real form as the real part of some complex linear form, we get a
vector (c1, · · · ,cg) ∈ Cg \{0} such that for all α ∈ π1(X),

Re

 g

∑
j=1

c j

∫
α

ω j

= 0.

By Fact 1.2.5 we conclude that c1ω1 + · · ·+ cgωg = 0,
a contradiction!

■

Hence, we can introduce the concept of the Jacobi variety:

Definition 3.2.2 — Jacobi Variety. The Jacobi variety of X is the compact complex manifold

Jac(X) := Cg/Per(ω1, · · · ,ωg).

R This definition is independent of the choice of the basis ω1, · · · ,ωg up to a biholomorphism.

3.3 Discussion of Case of Genus One
Now we suppose that g = 1. Take a point a ∈ X , a basis ω of Ω(X) and its corresponding period
lattice Γ := Per(ω). We define the following map J : X → Jac(X) :

J(x) :=
x∫

a

ω mod Γ.

Theorem 3.3.1 J is a biholomorphism.

Proof. It is clear that J is well defined and holomorphic, it is also non-constant since ω is non-trivial.
By the open map theorem for holomorphic map between Riemann surfaces, we deduce that J is

surjective.
We show that J is also injective: otherwise, by Theorem 2.3.1 one has a meromorphic func-

tion with a single pole of order one. It thus induces a 1-sheeted holomorphic covering (hence a
biholomorphism) from X to P1, a contradiction! ■

R Now we can finish the classification of compact Riemann surfaces of genus 1 since each such
Riemann surface is biholomorphic to a torus.



4. Abel’s Theorem: Complete Version

Still, let X be a compact Riemann surface of genus 1 and D be a divisor with degD = 0 on X .

Theorem 4.0.1 D has a solution if and only if there exists a 1-chain c ∈C1(X) with ∂c = D such
that for all ω ∈ Ω(X) we have ∫

c

ω = 0,

Or, equivalently saying, write D as

D = ∑
ν

(zν −wν),

Theorem 4.0.2 D has a solution if and only if

ϕ(D) :=

∑
ν

zν∫
wν

ω1, · · · ,∑
ν

zν∫
wν

ωg

≡ 0 mod Γ := Per(ω1, · · · ,ωg).

We have already proved the "if" part, it suffices to prove the "only if" part.

Proof. If D has a solution f , we construct a map ψ : P1 → Jac(X) as follows:

ψ([λ0,λ1]) := ϕ((λ0 f −λ1)).

One can check that ψ is well defined and continuous, also, it is holomorphic at points [1,λ ] if λ

is not a branched value of g. Since the other points form a discrete set, ψ is holomorphic. Thus ψ

lifts to a holomorphic map Ψ : P1 → Cg, it is constant since each component has to be, thus ψ is
constant, it follows that

ϕ(D) = ψ([1,0]) = ψ([0,1]) = 0.

■


	Harmonic Forms
	Complex Conjugation and the -operator
	The deRham-Hodge Theorem
	The "Main Theorem"

	Abel's Theorem: Incomplete Version
	Solution and Weak Solution of a Divisor
	Chains and Cycles
	Abel's Theorem: Incomplete Version

	Riemann Surfaces of Genus One
	Classification of Tori
	Period Lattices and Jacobi Variety
	Discussion of Case of Genus One

	Abel's Theorem: Complete Version

