Abel’s Theorem and
Compact Riemann
Surfaces of Genus One

Seminar Notes




1.1
1.2
1.3

2.1
2.2
23

3.1
3.2
3.3

Harmonic Forms

Complex Conjugation and the x-operator
The deRham-Hodge Theorem
The "Main Theorem"

Abel’s Theorem: Incomplete Version
Solution and Weak Solution of a Divisor
Chains and Cycles

Abel’s Theorem: Incomplete Version

Riemann Surfaces of Genus One
Classification of Tori

Period Lattices and Jacobi Variety
Discussion of Case of Genus One

Abel’s Theorem: Complete Version

10
10
12



1.1

a ] “Hurﬁ"ionlc Forms

Complex Conjugation and the x-operator

Let X be a Riemann surface.
Given an 1-form w € & (1)(X ), we can, locally, write it as

=Y fidg; f.8 € EX),
J

and then we define its complex conjugation as:

Definition 1.1.1 — Complex Conjugation.
@:=Y fidg;
J

It is easy to see that this definition is independent of choice of local representation of @.

Definition 1.1.2 We give the following related definitions:
A differentiable 1—form @ € &V (X) is called real if ® = @.
The real part of ® € &) (X) is

0+ a0
Re(w) := %

An 1-form is said to be anti-holomorphic if it is the complex conjugation of some holomorphic
1-form. The space of all anti-holomorphic 1-forms is noted Q(X).

We also know that @ can be uniquely decomposed as
0= +0,0 € E0X), 0, € £4(X).

With this decomposition, We introduce the x-operator:
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Definition 1.1.3 — The x-operator.
*® = i(®] — @).

Fact 1.1.1 Let o € £M(X), 01 € £'0(X)a, € £%'(X) and f € £(X), then we have:

1. The %-operator is an R-linear isomorphism of &(!) (X) mapping £%!(X) to &'9(X) and vice
versa.

2. %% 0 = —,*x0 = *x®,

3. d*(@] + 602) = id/(ﬁ1 — id//(x_)z,

4. xd' f = id" Fxd" f = id T,

5.dxdf =2id'd"f.

1.2 The deRham-Hodge Theorem
Definition 1.2.1 — Harmonic Forms. The 1-form o € &(V)(X) is called harmonic if
do=d*xw=0.
The vector space of all harmonic 1-form is noted Harm' (X).

By the above facts we can easily prove the following theorem:

Theorem 1.2.1 For @ € &V (X), the following conditions are equivalent:

(1) o is harmonic,

2)dow=d"0w=0,

(3) ® = o) + @, where @) € Q(X) and @, € Q(X),

(4) For all a € X there exists an open neighborhood U of a and a harmonic function f on U
such that @ = df.

By this theorem we can write
Harm!(X) = Q(X) ® Q(X),
thus if X is compact of genus g, then
dimHarm'(X) = 2g.
From now on we suppose that X is compact.

Definition 1.2.2 — Scalar Product in £()(X). For o, , € &V (X),

< W,0n >:= //0)1/\*@2.
X

It is easy to verify that this scalar product is well-defined.
Fact 1.2.2 The four spaces d'&(X),d"&(X),Q(X) and Q(X) are pairwise orthogonal.

Z/da)—o.

p ) Hint for proof: use the fact
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Fact 1.2.3 The two spaces d&'(X) and xd&'(X) are orthogonal and
d&(X) e *d&(X) =dEX)ad"&(X).

p ) Hint for proof: recall the fact 1.1.1.4.

The above discussion gives the following facts:

Theorem 1.2.4 An exact and harmonic 1-form on a compact Riemann surface vanishes and all
harmonic functions on a compact Riemann surface is constant.

and then useful fact follows:
Fact 1.2.5 Suppose o € Harm! (X) and @ € Q(X), then:
o = 0 if and only if for every closed curve ¥ on X one has

/620;
Y

o = 0 if and only if for every closed curve ¥ on X one has

/y Re(®) = 0.

By combining Dolbeault’s Theorem and Fact 1.2.2 and by comparing dimensions, we obtain
that:

Theorem 1.2.6 There is an orthogonal decomposition

EMNX)=d"EX) e QX).

This theorem implies directly a method to justify the existence of solution for the equation
d"f = o where 6 € £%!(X) is given:

Theorem 1.2.7 Suppose that o € &%!(X), then the equation d” f = o has a solution f € &(X) if
and only if for all @ € Q(X), one has

/ / oA =0.

X

Taking complex conjugates in Theorem 1.2.6 and then applying Facts 1.2.2 and 1.2.3, we have:

Theorem 1.2.8 There is an orthogonal decomposition

EW(X) = +xd&(X) ®d&(X) ® Harm' (X).

One can also prove that

Theorem 1.2.9

Ker (g“)(x) 4 £ (X)) — d&(X) & Harm! (X).

Combine this theorem with deRham’s Theorem, we obtain finally the deRham-Hodge Theorem:
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Theorem 1.2.10 For a compact Riemann surface X, we have

H'(X,C) ~Rh!'(X) ~ Harm' (X).

p) itallows us to compute the first Betti number of X:
b1(X):=dimH'(X,C) = 2g,

where g is the genus of X.

1.3 The "Main Theorem"

Following the above discussion, we state and prove the following theorem (the "Main Theorem" in
Donaldson’s book Riemann Sur faces):

Theorem 1.3.1 Let X be a compact Riemann surface and @ € &) (X), then the equation
dld/lf )

has a solution f € & (X) if and only if

Jfo-o

Proof. From Theorem 1.2.6 we obtain that
dg%(x) =d'd"€(X).
hence by Dolbeault’s Theorem and Serre’s Duality Theorem we have
A (x)/dd"&(X) ~ &P (X) /de" (X) ~ &P (X) /&0 (X) ~ H' (X, Q) ~H(X,0) ~ C.

We view the integration as a linear form on &) (X)/d'd"&(X) which is (well defined and)
non-zero, hence an isomorphism, and the result follows. [ |
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We always denote X a compact Riemann surface, g its genus and D € Div(X) a divisor on X.

2.1 Solution and Weak Solution of a Divisor
I Definition 2.1.1 — Solution. A solution of D is a meromorphic function f € .# (X) such that

(f) =D.

p) If D has a solution, then deg D = 0 by Residue Theorem.

In another word, a solution is a meromorphic function with asymptotic behavior at certain points
described by the divisor.

It is not easy for a divisor to have a solution, but we will prove that if deg D = 0, one can always
find a function with asymptotic behavior described by D, such a function is called a weak solution,
as we are going to define:

Definition 2.1.2 — Weak Solution. Note
Xp:={x€X:D(x) >0}.

A weak solution of D is a smooth function f on Xp such that for all a € X there exists a
coordinate neighborhood (U, z) with z(a) = 0 and a function y € % with y(a) # 0, such that

f=wz" on UNXp, where k = D(a).

R If f1 (resp. f>) is a weak solution of D (resp. D»), then fj f> is a weak solution of D + D;.

Lemma 2.1.1 Suppose ay,---,a, € X distinct and ky,--- ,k, € Z. Suppose D is the divisor on X
with D(aj) =kj,j=1,---,nand D(a) = 0 otherwise. Let f be a weak solution of D. Then for all
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g € &(X), we have

p ) Hint for proof: construct bump finctions on neighborhoods of a; and use Stokes’ Theorem.

2.2 Chains and Cycles

Definition 2.2.1 — 1-chain. We define the 1-chain group C;(X) as the free abelian group
generated by all curves on X. Elements of this group are called 1-chains.

For an element ¢ € C;(X), we can write

k
Cc = Zl’lj(,‘j,
j=1

where n; € Z and c; are curves.
One can naturally define integral of a closed 1-form over a 1-chain:

Definition 2.2.2 — Integral. For ¢ € C;(X) and a closed form o € &) (X),

k
/w:: an/a).
¢ J=1 cj

To introduce the concept of 1-cycles, we should define a boundary operator:

Definition 2.2.3 — Boundary Operator. For a curve ¢ on X, set dc = 0 be the zero divisor if
c(0) = ¢(1), otherwise let dc be the divisor with +1 at ¢(1) and —1 at ¢(0) and zero at all other
points. This definition can be extened to C;(X), hence induces a homomorphism of group

d:Ci(X) — Div(X).

Observation 2.2.1 Imd = {D € Div(X) : degD = 0}.
| Definition 2.2.4 — 1-Cycles. The 1-cycle group of X is defined as Z; (X) := kerd.

Theorem 2.2.2 For an 1-chain ¢ € Div(X), there exists a weak solution of dc such that, for all

closed form @ € & (X) one has
1 rdf
o=z )] Fre
X

c

p ) Hint for proof: since [0, 1] is compact, using the remark after Definition 2.1.2, it suffices to
consider the case where c is a curve and ¢([0, 1]) is contained in a coordinate neighborhood
biholomorphic to the unit disk. In this case, construct directly the weak solution f with help of
a bump function.
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2.3 Abel’s Theorem: Incomplete Version

have
/w:Q
C

then D has a solution.

Theorem 2.3.1 If there exists a 1-chain ¢ € C;(X) with dc = D such that for all ® € Q(X) we

Proof. Take a weak solution given by Theorem 2.2.2, we have for all © € Q(X),

0= [o= 5 [ F o=z [

Hence by Theorem 1.2.7, there exists a function g € &(X) such that

//
d//g ff N @.

Then we verify that F' := e 8 f is a solution of D.

p) In fact, if D has a solution, one can conclude that there exists a 1-chain ¢ € C(X) with dc =D
such that for all ® € Q(X) we have

o =0.

We will prove it later.
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# 3. Riemann Surfaces of Genus One

3.1 Classification of Tori
For two tori C/I'; and C/I',, suppose that

I'j=a;Z®b;Z,j=1,2.

Let
aj

BE j=1,2.
yj ba] )

J
We have already obtained the following classification result:

Theorem 3.1.1 C/T’} ~ C/T, if and only if there exists a matrix

(g“ g”) € GLy(Z)

821 822

such that
- g1y +g&i2

21 +82

3.2 Period Lattices and Jacobi Variety

For a compact Riemann surface of genus g > 1, take a basis @y,---, @, of Q(X). We define the
period lattice of X with respect to this basis in the following way:

Definition 3.2.1 — Period Lattices.

Per(wy,- - ,0,) 1= /(ol,---,/(og roem(X)

a a

We shall show that the period lattice is a lattice in CS.
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Lemma 3.2.1 There exists g distinct points ay,--- ,a, € X such that every holomorphic 1-form
vanishing at all a; is identically zero.

Proof. For a € X, notice that
H,={0e€QX): w(a) =0}

is a subspace of Q(X) with codimension O or 1, since the intersection of all H, is zero and
dimQ(X) =g,

the result follows. ]

Theorem 3.2.2 T :=Per(w,-- ,0,) is a lattice in C8.

In the proof, we will admit and use the following theorem:

Theorem 3.2.3 A subgroup I’ C C¥ is a lattice precisely if both of the following conditions hold:
(1) I' is discrete.
(2) T can R-generate CV.

Proof of Theorem 3.2.2. Chose ay,--- ,a, as in lemma 3.2.1 and take disjoint simply connected
coordinate neighborhoods (Uj,z;) of a; with zj(a;) = 0 and

; = ¢;jdz;j on U;.
First, show that I" is discrete: by lemma 3.2.1, the matrix
A= (¢ij(a))1<ij<g
has rank g. Now we define a mapping
F:U x---xUg—C®

as follows:
Xj Xxj
g g
F(X],"',.Xg):: Z/(D],"',Z/(Dg
jzlaj jzlaj

Clearly F is holomorphic and its Jacobian at a = (ay, - - - ,a,) is the invertible matrix A. Hence
we can suppose that F' is a diffeomorphism and

W :=F(U; x---xUy)

is a neighborhood of F(a) = 0. It suffices to show that TNW = {0}.
Suppose to the contrary that there exists a point

x=(x1,--,X) €Ur x---xUg,x#a
such that F(x) € I'. By Theorem 2.3.1 one can take a solution f of the divisor

X1+ +xg—ar—---—ag
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Let c¢; be the residue of f at a;, since a # x, there is some j such that ¢; # 0. By Residue
Theorem,

k
0=Res(fo) =} c;¢ij(a),i=1, g
j=1

This is impossible since (¢; j(a;))1<i j<¢ has rank g.

Then, we show that I" can R-generate C8: otherwise, we could find a non-trivial R-linear form
on C8 vanishing on I, represent this real form as the real part of some complex linear form, we get a
vector (cy,---,cg) € C#\ {0} such that for all & € m;(X),

Re icj‘/(l)j =0.

=y

By Fact 1.2.5 we conclude that c; @y + -+ +c,0, = 0,
a contradiction!

Hence, we can introduce the concept of the Jacobi variety:

Definition 3.2.2 — Jacobi Variety. The Jacobi variety of X is the compact complex manifold

Jac(X) := C8 /Per(wy,- - , @,).
p) This definition is independent of the choice of the basis @, , @, up to a biholomorphism.

Discussion of Case of Genus One

Now we suppose that g = 1. Take a point a € X, a basis @ of Q(X) and its corresponding period
lattice I' := Per(®). We define the following map J : X — Jac(X) :

J(x) :—/xa) mod I'.

a

Theorem 3.3.1 J is a biholomorphism.

Proof. 1tis clear that J is well defined and holomorphic, it is also non-constant since @ is non-trivial.
By the open map theorem for holomorphic map between Riemann surfaces, we deduce that J is
surjective.
We show that J is also injective: otherwise, by Theorem 2.3.1 one has a meromorphic func-
tion with a single pole of order one. It thus induces a 1-sheeted holomorphic covering (hence a
biholomorphism) from X to P!, a contradiction! |

p) Now we can finish the classification of compact Riemann surfaces of genus 1 since each such
Riemann surface is biholomorphic to a torus.
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Still, let X be a compact Riemann surface of genus 1 and D be a divisor with degD =0 on X.

Theorem 4.0.1 D has a solution if and only if there exists a 1-chain ¢ € C(X) with dc = D such
that for all @ € Q(X) we have

/w:Q

c

Or, equivalently saying, write D as

D= Z(Zv —Wv)a

Theorem 4.0.2 D has a solution if and only if

2y 2y
o(D) := Z/wl,---,Z/wg =0 modI:=Per(w,:--,0,).
v \4

We have already proved the "if" part, it suffices to prove the "only if" part.

Proof. If D has a solution f, we construct a map y : P! — Jac(X) as follows:

V(A0 1]) == @((Mof — A1)

One can check that y is well defined and continuous, also, it is holomorphic at points [1,A] if A
is not a branched value of g. Since the other points form a discrete set, Y is holomorphic. Thus y
lifts to a holomorphic map ¥ : P! — C8, it is constant since each component has to be, thus V is
constant, it follows that

¢(D) = w([1,0]) = y([0,1]) = 0.
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