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Introduction

Les études de la persistance dans des espaces topologiques filtrés est inspiré par l’analyse topolo-
gique des données (ATD). Comme dans la topologie algébrique classique, on étudie ces objets via des
invariants algébriques. Du point de vue des applications, on souhaite avoir des invariants par homoto-
pie (de façon à ne pas être sensibles à de petites déformations) qui sont comparables pour divers jeux
de données, ce qui va se faire par l’intermédiaire de (pseudo-)métriques.

Regardons d’abord des applications en ATD. Souvent, ces données apparaissent comme un grand
sous-ensemble fini d’un espace euclidien — qu’on qualifie souvent de nuage de points. Ce qu’on appelle
l’hypothèse de variété prescrit que ces données s’accumulent sur une sous-variété X de l’espace ambiant.
On peut alors penser les données comme une discrétisation de cet objet continu X, qui peut être a
priori inconnu. L’ATD a pour but d’étudier la topologie de X pour comprendre ou organiser les
données. On s’appuie sur les méthodes de la topologie algébrique classique adaptées aux espaces filtrés
pour estimer la topologie des données.

Dans l’exemple d’un sous-ensemble discret X d’un espace euclidien, vu comme une approximation
d’une sous-variété X, on peut considérer X(r) =

⋃
x∈X B(x, r). Si X est une bonne approximation de

X, alors X(r) est un espace topologique qui, pour un r ni trop petit (sinon on ne voit que les points)
ni trop grand, va être un épaississement de X qui lui sera homotope. On remarque que cette famille
(X(r))r≥0 est filtrée au sens où r < r′ implique X(r) ⊂ X(r′).

Étant donné des espaces filtrés (Xi)i∈R, on peut induire une filtration des modules (ou bien un
module persistant) (Hk(Xi))i∈R en prenant l’homologie de certain degré k. Cette structure a de bonnes
propriétés dans le cadre algébrique, notamment la décomposition en indécomposables simples carac-
térisés par un intervalle de R. La donnée de ces intervalles est un objet combinatoire, appelé son
code-barres, qui permet de le manipuler informatiquement et combinatoirement facilement. Les mo-
dules de persistance ont une (pseudo-)métrique naturelle, appelée distance d’entrelacement, qui a une
traduction combinatoire sur le code-barres appelée distance bottleneck. Dans les applications, les dis-
tances que l’on a obtenues pour comparer les modules persistants (ou leurs code-barres associés à des
données) reflètent bien la géométrie des données. Ceci est établi par les théorèmes de stabilité, qui
essentiellement garantissent que l’homologie persistante est stable sous petite déformation.

Ces résultats font partie de ce qu’on appelle la théorie de l’homotopie persistante, qui permet des
applications bien implementables sur machine. On renvoie les lecteurs vers [Gin25]. Par analogie avec la
topologie algébrique classique, on imagine qu’il devrait exister une théorie de l’homotopie persistante.
On abordera également ce sujet dans ce rapport. On renvoie les lecteurs vers [BL23].

On introduit les entrelacements d’homotopie et la métrique induite, la distance d’entrelacement
d’homotopie, et on présentera les analogies des résultats en homologie persistance. Les entrelacements
d’homotopie nous permettent de formuler des théorèmes sur l’homologie persistante directement au
niveau des espaces filtrés, plutôt qu’au niveau des codes-barres. Nous discuterons aussi le problème
d’obtenir un théorème de Whitehead persistant [LS20] en utilisant les entrelacements d’homotopie.
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Chapitre 1

Homologie Persistante

1.1
MODULES DE PERSISTANCE

Soit F un corps. Nous introduisons le miroir algébrique des espaces filtrés : la notion de module de
persistance. On commence par une définition plus générale.

Définition 1.1.1 (Objet de persistance). Soient (S, <) un ensemble partiellement ordonné et C une
catégorie, on appelle la catégorie des C-objets de persistance modélés sur (S, <) la catégorie des fonc-
teurs de S< vers C, où S< est la catégorie avec ensemble d’objets S et les ensembles des morphismes

HomS<(s, t) =
{

{∗} si s = t ou s < t;
∅ sinon.

En prenant S< = R< et C = Top, on obtient les modules de persistance.

Exemple 1.1.2 (Module d’intervalle). Soit E un F-espace vectoriel et soit I un intervalle de R. On
dispose d’un module de persistance associé défini comme suit : pour tout t ∈ R, on a

EI(t) =
{

E si t ∈ I

{0} sinon,

et les morphismes structuraux sont donnés, pour tout s ≤ t, par ιEI
s≤t = idE si t, s ∈ I et 0 sinon.

Exemple 1.1.3. Pour tout réel t, on pose F̃(t) = F et, pour s < t,

ιF̃s≤t =


idF si t ≤ 0
0 si s ≤ 0 et t > 0
idF si s > 0

On vérifie que c’est bien un module de persistance, et pour tout t, on a F̃(t) = FR(t), mais les mor-
phismes structuraux diffèrent. En particulier, F̃ n’est pas isomorphe à FR comme module de persistance.

Puisque tout sous-ensemble de R héritant d’une structure d’ensemble partiellement ordonné, nous
avons immédiatement une notion de modules et objets de persistance pour tout sous-ensemble de R.
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Et par ailleurs, tout objet persistant sur R induit une telle structure par restriction. Notons que si
S ⊂ R est discret, on peut étendre tout module de persistance F sur S en un module sur R en prenant
pour t ∈ [s, s′[, avec s, s′ deux éléments consécutifs de S, F (t) = F (s) et en étendant les morphismes
de structure par l’identité sur [s, s′[.

Exemple 1.1.4 (Espaces de persistance). Soit (X(t))t∈R une famille d’espaces topologiques tels que
pour s < t on ait X(s) ⊂ X(t). Alors cette collection (X(s), X(s) ↪→ X(t))s≤t définit un espace
topologique de persistance. On remarque que les exemples de sous-niveaux de fonction et de réunion
de boules de l’introduction sont précisément de cette nature. Et que tout espace filtré au sens usuel
l’est également (pour le sous-ensemble N de R). De même, un complexe simplicial filtré F0X ⊂ · · · ⊂
FnX ⊂ · · · est un complexe simplicial de persistance modélé sur N.

Exemple 1.1.5 (Module de persistance associé à un espace de persistance). Soit (X(t))t∈R une
famille d’espaces topologiques telle que pour s < t on ait X(s) ⊂ X(t). Notons ιs≤t : X(s) ↪→ X(t) les
inclusions. Alors, en prenant les groupes d’homologie en degré i, on obtient des applications linéaires
Hi(ιs≤t,F) : Hi(X(s),F) → Hi(X(t),F) qui font de

(Hi(X(t),F), Hi(ιs≤t,F))s,t

un module de persistance (car prendre les groupes d’homologie est un foncteur). On notera que bien que
ιs≤t soit une inclusion, on n’a aucune propriété particulière pour les morphismes induits en homologie.

On appelle aussi ce module de persistance l’homologie persistante de (X(t))t.
Notons qu’une construction similaire à l’exemple précédent fonctionne pour tout espace topologique

de persistance (autrement dit un objet de persistance dans la catégorie des espaces topologiques), ou
pour tout complexe de chaînes de persistance.

Remarque 1.1.6. La remarque naïve est ici que tout foncteur C → D induit un foncteur des C-objets
de persistance vers les D-objets de persistance, par simple composition de foncteurs.

Exemple 1.1.7 (Sous-niveaux). Soit X un espace topologique et f : X → R une application continue.
Le sous-niveau (ouvert) de hauteur t est la préimage Xf (t) := f−1(] − ∞, t[). On a en particulier que
Xf (s) ⊂ Xf (t) si s ≤ t. D’après l’exemple 1.1.5, on a pour tout i ∈ N du module de persistance

Hi(Xf (t),F)

appelé module de persistance en degré i de f .

Donnons maintenant un exemple clé en lien avec l’approximation discrète d’un sous-espace.

Exemple 1.1.8 (Module de Čech). Soit X un sous-ensemble d’un espace métrique (Y, d) et soit r > 0.
On construit un complexe simplicial (abstrait) Č(Xr) dont les sommets sont les points de X. L’ensemble
∆n(Xt) des n-simplexes de Č(Xt) est l’ensemble des (n + 1)-uplets {x0, . . . , xn} de points de X tels que

n⋂
i=0

B(xi, r) ̸= ∅.

Par convention on pose Č(Xr) = ∅ pour r ≤ 0.
Pour tout r < r′, l’ensemble Č(Xr) est un sous-complexe simplicial de Č(Xr′). En passant aux

groupes d’homologie simpliciale, on obtient pour tout entier naturel i un module de persistance

HiČ(X) =
(
Hi(Č(Xr),F)

)
r

dont les morphismes structuraux sont induits par les inclusions.
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Cet espace a une autre interprétation. Il s’agit en fait d’une abstraction combinatoire de la réunion
des boules de rayon r dont les centres sont les points de X.

Proposition 1.1.9. Soit X ⊆ Rm. Alors la réalisation géométrique du complexe de Čech |Č(Xr)| est
homotope à

⋃
x∈X B(x, r) et le diagramme suivant est commutatif à homotopie près :

|Č(Xr)| −→ |Č(Xr′)|

≃
∣∣∣∣ ∣∣∣∣ ≃⋃

x∈X B(x, r) −→
⋃

x∈X B(x, r′).

Notons que si X est fini, alors pour r petit, l’homologie persistante est concentrée en degré 0 et y
est engendré par les points de X ; et pour r grand, Č(Xr) est homotope à une boule et donc contractile.
L’information intéressante réside dans les transformations qui se présentent entre ces deux extrêmes.

1.2
STRUCTURE DES MODULES DE PERSISTANCE

Étant donnée une catégorie de foncteurs à valeurs dans les espaces vectoriels, la catégorie des
modules de persistance hérite de limites et colimites (donc de produits et coproduits). En particulier
nous avons la notion de somme directe M ⊕ N de deux modules de persistance M, N :

(M ⊕ N)(t) = M(t) ⊕ N(t), (M ⊕ N)(s)
(ιM

s≤t,ιN
s≤t)

−−−−−−→ (M ⊕ N)(t).

Nous notons simplement 0 le module de persistance qui vaut 0 en tout point.

Définition 1.2.1 (Module décomposable). On dit qu’un module persistant M est décomposable s’il
est isomorphe à une somme directe N1 ⊕ N2 avec N1, N2 ̸= 0. Sinon on dit qu’il est indécomposable.

Lemme 1.2.2. Les modules d’intervalle sont des objets injectifs dans la catégorie des modules de
persistance p.f.d., i.e., tout sous-module isomorphe à un module d’intervalle est un sommand direct.

Démonstration. Soit ι l’injection de FI dans M , alors colimI ι : colimI FI = F → colimI M est aussi
injective. On a alors ĝ : colimI M → F tel que g ◦ colimI ι = id. On définit alors gx : Mx → (FI)x par
la composition Mx → colimI M

ĝ−→ F ∼= (FI)x si x ∈ I et gx = 0 sinon, on a alors g ◦ ι = id.

Lemme 1.2.3. Soit M un module persistant tel que Mx ̸= 0 pour tout x ∈ I. Si ϕt
a est injectif pour

tout t ≥ a, alors FI est sommand de M . Dualement, ceci reste vrai si ϕt
a est surjectif pour tout t ≥ a.

Démonstration. Soit p ∈ I tel que dim Mp est minimal, prenons mp ∈ Mp \ {0}. Pour tout q ∈ I,
il existe c ∈ I tel que p, q ≥ c. On a alors dim Mc = dim Mp et donc ϕp

c est un isomorphisme. On
définit mq := ϕq

c((ϕp
c)−1(mp)) ∈ Mq, ceci ne dépend pas du choix de c. Ces éléments mq définisent une

inclusion de FI vers M , et on conclut par lemme 1.2.2.

Les modules de persistance ont une décomposition très simple en indécomposables :
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Théorème 1.2.4 (de structure des modules persistants [CO20, BCB20]). Soit M un module de
persistance p.f.d., i.e. pour tout t ∈ R, dim M(t) < ∞. Alors M se décompose sous la forme

M ∼=
⊕

I∈B(M)
FI

où B(M) est un multi-ensemble d’intervalles. La décomposition est unique à isomorphisme près et à
l’ordre près des termes dans la somme directe.

Par un multi-ensemble on entend un ensemble avec répétition possible de chaque intervalle.

Définition 1.2.5 (Code-barres). Le code-barres d’un module de persistance M est le multi-ensemble
d’intervalles B(M) donné par le théorème de décomposition.

Le code-barre est une donnée combinatoire très simple qui caractérise complètement tout module
de persistance p.f.d.. En particulier, cette donnée est facilement stockable informatiquement.

Démonstration du théorème 1.2.4. L’argument pour l’unicité est standard. Par un argument de type
de Zorn, on peut montrer que M se décompose en somme des modules indécomposables. Il reste à
montrer que les modules indécomposables. Supposons donc que M est indécomposable. On suppose
que le support I. I est un intervalle par indécomposabilité.

On cosidère d’abord le cas inf I =: a ∈ I. Prenons x ∈ Ma, alors N(t) = ϕt
a(xR) est un sous-module

de M qui est isomorphe à un module d’intervalle, le résultat suist donc par lemme 1.2.2.
Pour le cas général, on montre que les morphismes ϕy

x sont surjectifs pour tout x < y. Soit
N un sommand indécomposable de M≥x. Si Nx = 0, alors N est en fait un sommand de M , une
contradiction ! Ainsi, M≥x se décompose en somme des modules d’intervalles qui contiennent x. Donc
es morphismes ϕy

x sont surjectifs pour tout x < y. Et on conclut par lemme 1.2.3.

Exemple 1.2.6. Le module de persistance F̃ de l’exemple 1.1.3 se décompose comme F̃ = F]−∞,0] ⊕
F]0,+∞[. Donc il a pour code-barre {] − ∞, 0], ]0, +∞[}.

1.3
DISTANCE ENTRE MODULES DE PERSISTANCE

Dans les applications pour l’analyse des données, un point fondamental est de pouvoir comparer
à quel point des modules de persistance sont proches l’un de l’autre. Par exemple, si le module de
persistance associé à une discrétisation d’un espace est proche de celui de l’espace en question ?

La structure persistante permet de définir une notion de distance entre les objets persistants. Par
ailleurs, elle peut se transférer sur le code-barre, permettant de la calculer d’une manière algorithmique.

La distance induite par la structure persistante a un sens pour les espaces vectoriels et plus géné-
ralement pour des objets de persistance dans toute catégorie. Elle est basée sur la notion de décalage.

Définition 1.3.1 (Décalage d’un objet persistant). Soit F : R≤ → C un objet persistant dans C et
soit ε > 0. On note le décalage de longueur ε de F par F [ε] : R≤ → C l’objet persistant défini comme
suit : F [ε](t) = F (t + ε) et, pour s ≤ t, le morphisme structuré ι

F [ε]
s≤t : F [ε](s) → F [ε](t) est donné par

ι
F [ε]
s≤t = ιF

s+ε≤t+ε : F [ε](s) = F (s + ε) → F (t + ε) = F [ε](t).
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De façon similaire, si f : F → G est un morphisme de modules de persistance, on pose

f [ε] =
(

F [ε](t) = F (ε + t) ft+ε−−−→ G(ε + t) = G[ε](t)
)

t∈R
.

Pour tout ε > 0, F [ε] est un objet de persistance de C et (F 7→ F [ε], f 7→ f [ε]) est un en-
dofoncteur de la catégorie des objets de persistance de C. De plus, la collection de morphismes(
ιF
t≤t+ε : F (t) → F (t + ε)

)
t∈R

est un morphisme de modules de persistance F → F [ε], que l’on notera
τF [ε] et appellera morphisme de décalage de longueur ε. Pour tout ε′ > 0, on a τF [ε]◦τF [ε′] = τF [ε+ε′].

Définition 1.3.2 (Distance d’entrelacement). Soit C une catégorie. Soient F, G : R≤ → C des objets
persistants. On dit que F et G sont ε-entrelacés s’il existe µ : F → G[ε] et ν : G → F [ε] tels que
τF [2ε] = ν[ε] ◦ µ et τG[2ε] = µ[ε] ◦ ν. On appelle distance d’entrelacement entre F et G l’infimum

dI(F, G) := inf{ε ≥ 0 | F et G sont ε-entrelacés} ∈ R+ ∪ {∞}.

Lemme 1.3.3. La distance d’entrelacement est une pseudo-distance :

dI(F, G) ≥ 0 et dI(F, H) ≤ dI(F, G) + dI(G, H).

Notons que la distance d’entrelacement a du sens pour n’importe quelle catégorie C.

Lemme 1.3.4. Si Ψ : C → D est un foncteur, alors le foncteur induit Pers(C) → Pers(D) est 1-
lipschitzien : pour toute paire (F, G) : R≤ → C d’objets C-persistants, on a

dI(Ψ ◦ F, Ψ ◦ G) ≤ dI(F, G).

Le lemme s’applique en particulier pour les foncteurs groupes d’homologie Hi(−,F).

Exemple 1.3.5 (Décalage d’un module intervalle). Soient E un F-espace vectoriel et I = ⟨a, b⟩ un
intervalle (où on utilise ⟨, ⟩ pour ne pas préciser si les bornes sont ouvertes ou fermées). Le décalage
par ε du module intervalle EI est EI [ε] = E⟨a−ε,b−ε⟩. C’est donc le même module, mais porté par la
translation de ε sur la droite de l’intervalle I. On remarque que le morphisme de décalage naturel
FI → FI [ε] est nul si ε > b − a et non nul si ε < b − a. On peut en déduire le résultat suivant.

Lemme 1.3.6. On a dI(F⟨a,b⟩, 0) = b−a
2 et dI(F⟨a,b⟩,FJ) = 0 pour tout intervalle J avec les mêmes

extrémités que I. De plus, dI(F⟨a,b⟩,FJ) = +∞ si J est non borné.

La distance entre deux modules de persistance indécomposables dépend de la taille des intervalles
et de la comparaison entre les extrêmités des intervalles. Le théorème de structure 1.2.4 suggère alors
de transférer la distance entre modules de persistance vers leurs code-barres. Soient A, B des (multi)-
ensembles de barres (intervalles de R). Si I est un intervalle, on notera sI ≤ tI ses extrémités.

Définition 1.3.7 (Correspondance partielle). Une correspondance partielle entre A et B, notée A
G→

B, est la donnée d’un sous-ensemble G ⊂ A × B tel que les projections naturelles G → A et G → B
soient injectives. On dira qu’un élément (I, J) ∈ G est une paire accouplée et a contrario qu’un élément
I ∈ A

∐
B qui ne correspond pas à une paire accouplée est un élément non accouplé.

À toute correspondance partielle G ⊂ A × B, on associe son coût :
— si (I, J) ∈ G, le coût de (I, J) est c(I, J) = ∥(sI , tI) − (sJ , tJ)∥∞ ;
— si K ∈ A

∐
B est une barre non accouplée, le coût de K est c(K) = |sK−tK |

2 ;
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— le coût total de G est

c(G) := max
(
c(I, J), c(K), sur (I, J) paires accouplées, K non accouplée

)
.

Définition 1.3.8 (Distance bottleneck). Soient A, B des code-barres. La distance bottleneck

dbn(A, B) := inf
A

G→B

(
c(G)

)
,

la borne inférieure étant prise sur les correspondances partielles entre A et B.
Un point clé dans les applications est que la distance bottleneck peut se calculer algorithmique-

ment via des algorithmes efficaces d’appariement. Le théorème suivant permet de calculer la distance
d’entrelacement en termes de la distance bottleneck.
Théorème 1.3.9 (Isométrie, [BL15]). Soient M, N deux modules de persistance p.f.d., alors

dI(M, N) = dbn
(
B(M), B(N)

)
.

Démonstration. Montrons d’abord dbn(B(M), B(N)) ≥ dI(M, N). Prenons ε > dbn(B(M), B(N)), il
existe une correspondance partielle dont le coût est inférieur à ε, et on va construire un ε-entrelacement.
Pour les intervalles non accouplés, on impose l’application nulle. Pour (I, J) ∈ G, on impose entre FI

et FJ les application id sur I ∩ J et 0 ailleurs. Ceci donne bien un ε-entrelacement.
La démonstration de dbn(B(M), B(N)) ≤ dI(M, N) s’appuie sur les correspondances induites

[BL15]. Nous allons d’abord construire une action non canonique (au sens non fonctorielle) des mor-
phismes f : M → N sur les codes-barres B(M) et B(N).

Supposons d’abord que f est une surjection. Nous construisons l’action sur les codes-barres comme
suit : Pour tout b ∈ R, on trie les intervalles dans B(M) comme (b, d1] ⊇ (b, d2] ⊇ · · · ⊇ (b, dk] par
ordre décroissant. De même pour B(N) : (b, c1] ⊇ (b, c2] ⊇ · · · ⊇ (b, cK ]. Puis on apparie ces intervalles
via le principe « longest first », obtenant un matching µsur : B(M) → B(N).

Proposition 1.3.10. im µsur = B(N) et µsur(b, d] = (b, e] implique d ≥ e.

Si ι : M → N est une injection, nous construisons l’action sur les codes-barres par dualité, donc

Proposition 1.3.11. im(µ−1
inj ) = B(M) et µinj(b, d] = (c, d] implique c ≤ b.

Si f : M → N est un morphisme quelconque, on le décompose comme M
σ−→ im f

ι−→ N , puis
on obtient les correspondances µsur : B(M) → B(im f) et µinj : B(im f) → B(N). On remarque que
im µsur = B(im f) = im(µ−1

inj ), et donc on peut définir µ(f) = µinj ◦ µsur.
Décomposons f : V → W [δ] comme deux applications M

σ−→ im f
ι−→ N [δ].

Lemme 1.3.12. On a les propriétés suivantes pour µsur(f), et les résultats analogues sur µinj(f) :
1. im(µ−1

sur) contient les intervalles de B(M) de longeurs au moins 2δ.
2. Si µsur envoie (b, d] sur (b, d′], alors d′ ∈ [d − 2δ, d]

Étant donné un δ-entrelacement (f, g), nous avons un matching Ψδ : B(N [δ]) → B(N) obtenu en
décalant chaque barre. Considérons maintenant le matching µ = µ(f) et formons la composition

B(M) µsur−−→ B(im f) µinj−−→ B(N [δ]) Ψδ−−→ B(N).

Suivons le parcours d’une barre sous cette application :

(b, d] µsur−−→ (b, d′] µinj−−→ (b′, d′] Ψδ−−→ (b′ + δ, d′ + δ].

D’après lemme 1.3.12, toute barre de longeur au moins 2δ est appariée ; d − 2δ ≤ d′ ≤ d et
b − 2δ ≤ b′ ≤ b. Ainsi, |(b′ + δ) − b| ≤ δ et |(d′ + δ) − d| ≤ δ. On a bien une δ-correspondance.
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1.4
STABILITÉ

Une question élémentaire qui se pose est de savoir si la notion de distance d’entrelacement entre
modules de persistance associée à des objets géométriques est « continue » en un sens à préciser.
La réponse est donnée par les théorèmes « de stabilité », qui justifient l’utilisation des modules de
persistance dans les applications associées aux exemples 1.1.7 et 1.1.8.

On commence par les modules de persistance associés aux sous-niveaux d’une fonction. On dira
qu’une fonction f : X → R est p.f.d. si son module de persistance associé Hi(Xf ) est p.f.d.. C’est
toujours le cas en pratique pour des fonctions associées à des données finies.

Notons que si ∥f − g∥∞ ≤ ε, alors les espaces persistants Xf et Xg sont ε-entrelacés puisque
f(x) ≤ t implique g(x) ≤ t + ε et symétriquement. Le lemme 1.3.4 et le théorème d’isométrie 1.3.9
impliquent alors le résultat suivant.

Théorème 1.4.1 (Théorème de Stabilité I). Soient f, g : X → R des fonctions p.f.d., Bn(f) et Bn(g)
les code-barres associés à l’homologie persistante en degré n des leurs sous-niveaux. On a

dbn(Bn(f), Bn(g)) ≤ ∥f − g∥∞.

Passons au cas des complexes de Čech Exemple 1.1.8).
Rappelons que si K, L sont deux sous-espaces compacts d’un espace métrique (Y, d), alors leur

distance de Hausdorff est

dH(K, L) = max
(

max
x∈K

d(x, L), max
y∈L

d(y, K)
)

.

Si maintenant K et L sont des espaces métriques compacts abstraits, on a la généralisation suivante.
Appelons plongement isométrique (X, d) → (Y, d′) une application continue entre espaces métriques
qui est un homéomorphisme sur son image et une isométrie.

Définition 1.4.2 (Distance de Gromov-Hausdorff). Soit K, L deux espaces métriques compacts. Leur
distance de Gromov-Hausdorff est

dGH(K, L) = inf
Z,γK ,γL

dH(γK(K), γL(L))

où γK , γL sont des plongements isométriques de K et L dans un même espace métrique Z.

La distance de Gromov-Hausdorff que nous donnons ici diffère de certaines conventions par un
facteur de 2. Le deuxième théorème de stabilité énonce :

Théorème 1.4.3 (Théorème de Stabilité II [CSO14]). Soient X, Y deux espaces métriques compacts.
On note Bn(X) et Bn(Y ) les code-barres associés à l’homologie persistante en degré n des complexes
de Čech associés. Pour tout entier n, on a

dbn(B(X), B(Y )) ≤ dGH(X, Y ).

Les théorèmes de stabilité suggèrent que les petites barres dans un code-barre représentent du
bruit, au sens où les changements de topologie (manifestés par la distance de la convergence uniforme
ou la distance de Gromov-Hausdorff) ne sont perceptibles que par les grandes barres a priori.
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Chapitre 2

Homotopie Persistante

Une question naturelle est de savoir si on peut établir des résultats homotopiques sur les espaces
persistants, analogues de ceux de la côté homologique.

Définition 2.0.1. Pour toute petite catégorie I et des foncteurs X, Y : I → Top, nous disons qu’une
transformation naturelle f : X → Y est une équivalence faible (objet par objet) si fa : Xa → Ya est
une équivalence d’homotopie faible (induit des isomorphismes sur les groupes d’homotopie) pour tout
a ∈ ob I. Nous notons

X Y≃

une équivalence faible objet par objet de X vers Y . Nous disons que X et Y sont faiblement équivalents,
et écrivons X ≃ Y , s’il existe un zigzag d’équivalences faibles objet par objet

W1 · · · Wn

X W2 Wn−1 Y.

≃ ≃ ≃ ≃ ≃ ≃

Ceci est clairement une relation d’équivalence sur les objets, mais elle est peu maniable. Comme
nous l’expliquons dans la section 2.2, X ≃ Y si et seulement s’il existe un zigzag de la forme suivante :

W

X Y.

≃ ≃

Pour obtenir un résultat homotopique, nous souhaitons identifier une distance d sur les R-espaces
satisfaisant les conditions suivantes :

1. Axiome de stabilité. Pour tout X ∈ ob Top et fonctions γ, κ : X → R,

d((Xγ(t))t, (Xκ(t))t) ≤ ∥γ − κ∥∞,

2. Axiome d’invariance par homotopie. d(X, Y ) = 0 dès que X ≃ Y (définition 2.0.1).
3. Axiome de bornitude en homologie. Pour tout i ≥ 0 et espaces persistants X, Y avec HiX et

HiY p.f.d.,
dbn(B(HiX), B(HiY )) ≤ d(X, Y ).
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Rapport d’Enseignnement Approfondi

2.1
DISTANCE D’ENTRELACEMENT D’HOMOTOPIE

La distance d’entrelacement dI (Définition 1.3.2) au niveau des espaces persistants est stable et
bornée en homologie, mais n’est pas invariante par homotopie (considérer X = {0}R et Y = RR), et
ne satisfait pas (2.1). Nous définissons les entrelacements d’homotopie et la distance d’entrelacement
d’homotopie dHI sur les espaces persistants en modifiant la définition de dI pour imposer l’axiome
d’invariance par homotopie.

Nous introduisons maintenant notre généralisation homotopique des entrelacements.

Définition 2.1.1. Pour δ ≥ 0, nous disons que des R-espaces X et Y sont δ-entrelacés par homotopie
s’il existe des R-espaces X ′ ≃ X et Y ′ ≃ Y tels que X ′ et Y ′ sont δ-entrelacés.

Définition 2.1.2. La distance d’entrelacement d’homotopie entre les espaces persistants X et Y est

dHI(X, Y ) := inf {δ | X, Y sont δ-entrelacés par homotopie}.

Théorème 2.1.3. dHI est une distance sur les espaces persistants satisfaisant les axiomes de stabilité,
d’invariance par homotopie et de bornitude en homologie.

Preuve partielle de 2.1.3. Il est clair que dHI est symétrique et non négative, et que pour tout espace
persistant X, dHI(X, X) = 0. Pour établir que dHI est une distance, il suffit alors de vérifier que dHI
satisfait l’inégalité triangulaire ; nous vérifions ceci dans la section 2.3 ci-dessous.

Il est facile de vérifier que dHI est stable et invariante par homotopie. Une équivalence faible entre
espaces persistants X, Y induit un 0-entrelacement entre HiX, HiY , et comme noté précédemment, un
δ-entrelacement entre X, Y induit un δ-entrelacement entre HiX, HiY . À partir de ces observations,
de l’inégalité triangulaire pour dI sur les modules de persistance, et du théorème 1.3.9, nous avons
que dHI est bornée en homologie.

Alors qu’il est trivial de montrer que dI satisfait l’inégalité triangulaire, notre preuve de l’inégalité
triangulaire pour dHI nécessite du travail. Notre argument revient à montrer que certaines des appli-
cations internes dans une certaine extension de Kan sont des équivalences d’homotopie faibles. Étant
donné l’inégalité triangulaire pour dHI et le théorème de stabilité algébrique, le reste de la preuve du
théorème 2.1.3 est trivial.

Nous remarquons que théorème 1.4.3 peuvent être formulés au niveau des espaces en utilisant
la distance d’entrelacement d’homotopie, pour toute distance satisfaisant nos axiomes de stabilité et
d’invariance par homotopie.

Théorème 2.1.4. Pour toute distance d stable et invariante par homotopie sur les espaces persistants,
pour tous espaces métriques P et Q,

d(Č(P ), Č(Q)) ≤ dGH(P, Q). (2.1)

Les théorèmes 2.1.4 et 2.1.3 nous disent alors en particulier que dHI satisfait (2.1).
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2.2
UN PEU DE THÉORIE DES CATÉGORIES

Dans cette section, nous passons brièvement en revue les idées standards de la théorie des catégories
dont nous aurons besoin dans le reste : les extensions de Kan et les catégories de modèles.

Définition 2.2.1. Une extension de Kan (à gauche) d’un foncteur F : C → E le long d’un foncteur
G : C → D est un foncteur LGF : D → E

C E

D

F

G
LGF

muni d’une transformation naturelle η : F ⇒ LGF ◦ G qui est universelle au sens que pour toute autre
paire (H : D → E, γ : F ⇒ H ◦ G), γ se factorise de manière unique par η.

Dans le cas où C est petite et E est cocomplète, l’extension de Kan à gauche existe.

Définition 2.2.2. Une catégorie de modèles est une catégorie C complète et cocomplète, munie de
trois collections distinguées de morphismes dans C, appelées les équivalences faibles, fibrations et
cofibrations, satisfaisant les quatre axiomes ci-dessous. Nous disons qu’une (co)fibration est acyclique
si elle est aussi une équivalence faible.

1. Les équivalences faibles contiennent tous les isomorphismes et satisfont la « propriété des 2/3
» : pour des morphismes f : X → Y et g : Y → Z, si deux quelconques parmi f , g, g ◦ f sont
des équivalences faibles, alors la troisième l’est aussi.

2. Les équivalences faibles, cofibrations et fibrations sont stables par rétracte ; c’est-à-dire, s’il
existe un diagramme commutatif

X Y X

X ′ Y ′ X ′,

f g f

où les composées horizontales sont l’identité et g appartient à la classe, alors f y appartient
aussi.

3. Dans le carré commutatif
A X

B Y,

f g

si f est une cofibration, g est une fibration, et (au moins) l’une d’elles est acyclique, alors il
existe un relèvement B → X qui rend le diagramme commutatif.

4. Tout morphisme dans C se factorise fonctoriellement comme composition d’une cofibration
suivie d’une fibration acyclique ou composition d’une cofibration acyclique suivie d’une fibration.
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Le fait standard suivant nous sera utile dans notre preuve de l’inégalité triangulaire pour dHI.

Proposition 2.2.3 ([DS95, Proposition 3.14]). Étant donné un carré cocartésien dans C,

A X

B Y,

f g

si f est une cofibration (acyclique), alors g l’est aussi. Le résultat dual (limites inverses et fibrations)
est également vrai.

Puisqu’une catégorie de modèles C est complète et cocomplète, elle a un objet initial ∅ et un objet
final ∗. Nous disons que X ∈ ob C est cofibrant si l’unique morphisme ∅ → X est une cofibration ; dua-
lement, un objet est fibrant si l’unique morphisme X → ∗ est une fibration. L’application de l’axiome
de factorisation fonctorielle ci-dessus aux morphismes ∅ → X donne un foncteur de remplacement
cofibrant Q : C → C avec chaque QX cofibrant, et une transformation naturelle Q → IdC qui est une
fibration acyclique sur chaque objet de C.

Exemple 2.2.4. Dans la structure de modèles standard sur Top, les équivalences faibles sont les
équivalences d’homotopie faibles et les fibrations sont les fibrations de Serre ; les cofibrations sont alors
déterminées à partir des fibrations acycliques par les axiomes des catégories de modèles. Dorénavant,
les équivalences faibles, fibrations, et cofibrations d’espaces topologiques seront entendues comme celles
de la structure de modèles standard. Cette catégorie de modèles est engendrée de manière compacte,
où les cofibrations génératrices sont les inclusions de bords Sn−1 → Dn ; les objets cofibrants sont des
rétractes de complexes cellulaires, et les cofibrations dans la structure de modèles standard admettent
une description concrète, comme rétractes d’inclusions CW généralisées [DS95].

Exemple 2.2.5. Pour toute petite catégorie I, il existe une structure de catégorie de modèles sur
TopI , la structure de modèles projective, pour laquelle les équivalences faibles sont les équivalences
faibles objet par objet et les fibrations sont les fibrations objet par objet [Hir09, Section 11.6]. Pour
la plupart des choix de I, les cofibrations objet par objet ne sont pas nécessairement des cofibrations.
Cependant, il est simple de vérifier que si X ∈ TopI est cofibrant, alors chaque objet dans X est
cofibrant, et chaque application interne dans X est une cofibration. Tous les objets sont fibrants dans
la structure de modèles standard sur Top, donc tous les objets de TopI sont fibrants dans la structure
de modèles projective.

Catégories d’homotopie On peut construire la catégorie d’homotopie associée Ho(C) de toute
catégorie de modèles C [DS95, Définition 5.6]. La catégorie Ho(C) a la même collection d’objets que C
et est munie d’un foncteur ΠC : C → Ho(C) qui est l’identité sur les objets. ΠC est la localisation de C
par rapport aux équivalences faibles [DS95, Théorème 6.2]), c’est-à-dire qu’il envoie les équivalences
faibles sur des isomorphismes, et pour tout foncteur F : C → D ayant cette propriété, il existe un
unique foncteur G : Ho(C) → D tel que le diagramme suivant commute :

C D

Ho(C)

F

ΠC
G

13
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En particulier, à équivalence de catégories près, Ho(C) ne dépend que des équivalences faibles de C, et
non des (co)fibrations. Nous notons

X Y≃

une équivalence faible de X vers Y . Nous disons que X et Y sont faiblement équivalents et écrivons
X ≃ Y si X, Y ∈ ob C sont isomorphes dans Ho(C).

Le fait que ΠC soit une localisation implique que X ≃ Y si et seulement s’il existe un zigzag
d’équivalences faibles dans C connectant X et Y . Ainsi, deux diagrammes d’espaces sont faiblement
équivalents par rapport à la structure de modèles projective si et seulement s’ils sont faiblement
équivalents au sens de définition 2.0.1. En fait, on peut vérifier que dans toute catégorie de modèles
C, X ≃ Y si et seulement s’il existe un diagramme d’équivalences faibles

Z1 Z2

X Y.

≃
≃≃

De plus, il est facile de vérifier que si soit tous les objets de C sont fibrants, soit tous sont cofibrants,
alors X ≃ Y si et seulement s’il existe des équivalences faibles

Z

X Y.

≃ ≃

En particulier, ceci s’applique à la structure de modèles projective, dont tous les objets sont fibrants.

2.3
L’INÉGALITÉ TRIANGULAIRE

Dans cette section, nous prouvons l’inégalité triangulaire pour dHI, complétant ainsi la preuve du
théorème 2.1.3. Il suffit de montrer que si W et X sont δ-entrelacés par homotopie et X et Y sont
ϵ-entrelacés par homotopie, alors W et Y sont (δ + ϵ)-entrelacés par homotopie.

Définition 2.3.1. Nous définissons une catégorie marquée comme étant une catégorie finie et mince
I munie d’une application m : S → [0, ∞), où S est un sous-ensemble de l’ensemble des paires non
ordonnées d’objets isomorphes dans I. Pour simplifier la notation, nous écrirons m({a, b}) comme
m(a, b). Nous notons une paire {a, b} ∈ S avec m(a, b) = δ de la manière suivante :

a bδ

Définissons Ī, la catégorie d’entrelacement de la catégorie marquée I, comme la catégorie mince avec
ob Ī = ob I × R et hom Ī engendré par l’ensemble de flèches

{(a, r) → (b, r) | r ∈ R, a → b ∈ hom(I), {a, b} ̸∈ S}
∪{(a, r) → (b, r + m(a, b)) | r ∈ R, {a, b} ∈ S}.

Définissons un diagramme d’espaces persistants indexé par I comme un foncteur F : Ī → Top. F se
restreint en un R-espace Fa pour chaque a ∈ ob I, en une transformation naturelle Fa,b : Fa → Fb

pour chaque a → b ∈ hom(I) avec {a, b} ̸∈ S, et en un m(a, b)-entrelacement entre Fa et Fb pour
chaque {a, b} ∈ S.
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Soit I la catégorie marquée suivante :

•

a • • b.δ ϵ

Si W et X sont δ-entrelacés par homotopie et X et Y sont ϵ-entrelacés par homotopie, alors en utilisant
le fait que ≃ est une relation d’équivalence sur les R-espaces, il existe un diagramme F de R-espaces
indexé par I tel que Fa ≃ W , Fb ≃ Y , et les deux flèches diagonales sont des équivalences faibles. En
prenant un remplacement cofibrant de F , nous pouvons supposer que F est cofibrant.

Soit J l’extension marquée suivante de I :

e

a f g b

c h d

δ ϵ

δ ϵ

et soit ι : I ↪→ J l’inclusion de catégories. L’inclusion ι induit un foncteur d’inclusion ῑ : Ī ↪→ J̄.
Puisque nous supposons F cofibrant, LJ̄F calcule l’extension de Kan gauche de F le long de ῑ.

Pour établir que W et Y sont (δ + ϵ)-entrelacés par homotopie, il suffit de prouver la proposition
suivante ; l’entrelacement par homotopie (δ + ϵ) désiré est alors donné par composition.

Proposition 2.3.2. Les morphismes La,c : La → Lc et Lb,d : Lb → Ld sont des équivalences faibles.

Démonstration. On montre que La,c est une équivalence faible ; l’argument pour Lb,d est le même.
On montre d’abord que pour chaque r ∈ R, {(e, r), (f , r), (g, r), (h, r)} est un carré de pushout.

Puisque F est cofibrant, l’application F(e,r),(g,r) est une cofibration ; par hypothèse, c’est en fait une co-
fibration acyclique. Ainsi, proposition 2.2.3 implique que L(f ,r),(h,r) est aussi une cofibration acyclique.
Ceci est vrai pour tout r, donc Lf ,h est une cofibration acyclique objet par objet.

Le même argument montre que pour tout r ∈ R, {(a, r), (f , r − δ), (c, r), (h, r − δ)} est un carré de
pushout. Alors La,c est une cofibration acyclique objet par objet car Lf ,h l’est.

2.4
THÉORÈME DE WHITEHEAD PERSISTANT

Dans cette section, nous considérons l’idée de comparer des objets dans TopR en utilisant des
entrelacements dans Ho(Top)R. Nous définissons la distance d’entrelacement dans Ho(Top)R par dHC ;
d’après le lemme 1.3.4, nous avons dHI ≥ dHC. Nous nous demandons si l’inverse de cette inégalité est
vrai (à un facteur constant près). Lanari et Scoccola [LS20] donnent une réponse positive.

Théorème 2.4.1 ([LS20], Théorème A). Soit M une catégorie de modèles cofibrante générée, et
X, Y ∈ MR, alors dHI(X, Y ) ≤ 2dHC(X, Y ).
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Une catégorie de modèles est dite cofibrante générée s’il existe un petit ensemble de cofibrations
ainsi qu’un ensemble de cofibrations acycliques, tels que toutes les autres (co)fibrations (acycliques)
sont générées à partir de celles-ci en un certain sens. Des exemples de catégories de modèles cofibrantes
générées sont la structure de modèle de Kan-Quillen sur les ensembles simpliciaux et la structure de
modèle de Quillen sur les espaces topologiques, cf. [Hov99].

L’exemple suivant montre que le théorème ne tient pas sans l’hypothèse de génération cofibrante.

Exemple 2.4.2 ([BL23]). Pour chaque n ∈ {1, 2, . . .}, nous définissons

Y n
r :=


S2i × S2i × · · · × S2i︸ ︷︷ ︸

2n−i copies

pour r ∈ [2i, 2i + 2), i ∈ {0, 1, . . . n}

∗ pour r ∈ (−∞, 0) ∪ [2n + 2, ∞),

Pour i ≥ 0, nous avons une application

S2i × S2i → S2i+1 = S2i ∧ S2i
,

donnée en écrasant S2i ∨ S2i ⊂ S2i × S2i en un point ; ici ∨ et ∧ désignent respectivement le produit
en bouquet et le produit smash. Pour i ∈ {0, 1, . . . n − 1}, r ∈ [2i, 2i + 2) et s ∈ [2i + 2, 2i + 4), nous
prenons l’application interne Y n

r,s comme le produit de 2n−i−1 copies de cette application. Les autres
applications internes dans Y n sont spécifiées par composition.

Par exemple, en considérant le tore S1 × S1 comme un quotient d’un carré de la manière usuelle,
l’application Y 1

0,2 : S1 × S1 → S2 est celle induite en envoyant tout le bord du carré en un seul point,
et l’application Y 2

0,2 : S1 × S1 × S1 × S1 → S2 × S2 est égale à Y 1
0,2 × Y 1

0,2.
Pour tout i, l’application S2i ∨ S2i

↪→ S2i × S2i induit une surjection sur tous les groupes d’homo-
topie. Ainsi, πiY

n
r,r+2 est trivial pour tout r ∈ R et i ≥ 0. En définissant X ′ par X ′

r = ∗ pour tout r, il
s’ensuit que les morphismes triviaux X ′ → Y n(1) et Y n → X ′(1) induisent des 1-entrelacements sur
tous les groupes d’homotopie persistants basés.

Cependant, X ′ et Y n ne sont pas δ-équivalents par homotopie pour tout δ < n + 1. Pour le voir,
supposons que toutes les sphères dans la définition de Y n sont munies de la structure CW minimale
usuelle, et remarquons que Y n

r = S2n pour r ∈ [2n, 2n + 2). L’application Y n
0,r agit en écrasant le

(2n − 1)-squelette de Y n
0 en un point, donc il résulte d’un calcul facile d’homologie cellulaire que

H2n(Y n)0,r ̸= 0. Ainsi, H2n(Y n) et le module trivial H2n(X ′) ne sont pas δ-entrelacés. Il est facile
de vérifier qu’une δ-équivalence d’homotopie entre R-espaces A et B induit un δ-entrelacement entre
HiA et HiB pour tout i. Par conséquent, X ′ et Y n ne sont pas δ-équivalents par homotopie, comme
affirmé. D’autre part, X ′ et Y n sont strictement (n + 1)-entrelacés, via des morphismes triviaux.

Nous construisons ensuite Y ′ tel que les morphismes triviaux X ′ → Y ′(1) et Y ′ → X ′(1) induisent
des 1-entrelacements sur tous les groupes d’homotopie persistants basés, mais HiX

′ et HiY
′ ne sont

pas ϵ-entrelacés pour aucun ϵ fini. Pour ce faire, nous assemblons simplement les parties non triviales
de chaque Y n, en prenant chaque morphisme entre des espaces de deux Y n différents comme trivial ;
c’est-à-dire, nous prenons Y ′

r := Y 1
r pour r ∈ (−∞, 4), Y ′

r := Y 2
r−4 pour r ∈ [4, 10), et ainsi de suite.

Enfin, nous prenons X et Y comme des remplacements cofibrants de X ′ et Y ′, respectivement, et
soit f : X → Y (1) le remplacement cofibrant de l’application triviale X ′ → Y ′(1).
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