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Introduction

Les études de la persistance dans des espaces topologiques filtrés est inspiré par ’analyse topolo-
gique des données (ATD). Comme dans la topologie algébrique classique, on étudie ces objets via des
invariants algébriques. Du point de vue des applications, on souhaite avoir des invariants par homoto-
pie (de facon a ne pas étre sensibles & de petites déformations) qui sont comparables pour divers jeux
de données, ce qui va se faire par l'intermédiaire de (pseudo-)métriques.

Regardons d’abord des applications en ATD. Souvent, ces données apparaissent comme un grand
sous-ensemble fini d’un espace euclidien — qu’on qualifie souvent de nuage de points. Ce qu’on appelle
U’hypothése de variété prescrit que ces données s’accumulent sur une sous-variété X de ’espace ambiant.
On peut alors penser les données comme une discrétisation de cet objet continu X, qui peut étre a
priori inconnu. I’ATD a pour but d’étudier la topologie de X pour comprendre ou organiser les
données. On s’appuie sur les méthodes de la topologie algébrique classique adaptées aux espaces filtrés
pour estimer la topologie des données.

Dans ’exemple d’un sous-ensemble discret X d’un espace euclidien, vu comme une approximation
d’une sous-variété X, on peut considérer X(r) = J,ex B(z,7). Si X est une bonne approximation de
X, alors X(r) est un espace topologique qui, pour un r ni trop petit (sinon on ne voit que les points)
ni trop grand, va étre un épaississement de X qui lui sera homotope. On remarque que cette famille
(X(7))r>0 est filtrée au sens ot r < r’ implique X(r) C X(r').

Etant donné des espaces filtrés (X;);cr, on peut induire une filtration des modules (ou bien un
module persistant) (Hy(X;))icr en prenant ’homologie de certain degré k. Cette structure a de bonnes
propriétés dans le cadre algébrique, notamment la décomposition en indécomposables simples carac-
térisés par un intervalle de R. La donnée de ces intervalles est un objet combinatoire, appelé son
code-barres, qui permet de le manipuler informatiquement et combinatoirement facilement. Les mo-
dules de persistance ont une (pseudo-)métrique naturelle, appelée distance d’entrelacement, qui a une
traduction combinatoire sur le code-barres appelée distance bottleneck. Dans les applications, les dis-
tances que l'on a obtenues pour comparer les modules persistants (ou leurs code-barres associés a des
données) refletent bien la géométrie des données. Ceci est établi par les théorémes de stabilité, qui
essentiellement garantissent que I’homologie persistante est stable sous petite déformation.

Ces résultats font partie de ce qu’on appelle la théorie de I’homotopie persistante, qui permet des
applications bien implementables sur machine. On renvoie les lecteurs vers [Gin25]. Par analogie avec la
topologie algébrique classique, on imagine qu’il devrait exister une théorie de I’homotopie persistante.
On abordera également ce sujet dans ce rapport. On renvoie les lecteurs vers [BL23].

On introduit les entrelacements d’homotopie et la métrique induite, la distance d’entrelacement
d’homotopie, et on présentera les analogies des résultats en homologie persistance. Les entrelacements
d’homotopie nous permettent de formuler des théoremes sur I’homologie persistante directement au
niveau des espaces filtrés, plutot qu’au niveau des codes-barres. Nous discuterons aussi le probleme
d’obtenir un théoreme de Whitehead persistant [LS20] en utilisant les entrelacements d’homotopie.



Chapitre 1
Homologie Persistante

1.1
MODULES DE PERSISTANCE

Soit F un corps. Nous introduisons le miroir algébrique des espaces filtrés : la notion de module de
persistance. On commence par une définition plus générale.

Définition 1.1.1 (Objet de persistance). Soient (S, <) un ensemble partiellement ordonné et C une
catégorie, on appelle la catégorie des C-objets de persistance modélés sur (S, <) la catégorie des fonc-
teurs de S< wers C, ot S< est la catégorie avec ensemble d’objets S et les ensembles des morphismes

* s =1 <t
H0m5<(5,t):{{} si s ou s

0 sinon.

En prenant S< = R< et C = Top, on obtient les modules de persistance.

Exemple 1.1.2 (Module d’intervalle). Soit E un F-espace vectoriel et soit I un intervalle de R. On
dispose d’un module de persistance associé défini comme suit : pour tout t € R, on a

Ei(t) = E sitel
! {0} sinon,

et les morphismes structuraux sont donnés, pour tout s < t, par LSE<It =1idg sit,s € I et 0 sinon.

Exemple 1.1.3. Pour tout réel t, on pose F(t) =TF et, pour s < t,

idp sit<0
Lfgt: 0 sis<0ett>0
idp sis>0

On vérifie que c’est bien un module de persistance, et pour tout t, on a F(t) = Fg(t), mais les mor-
phismes structuraux différent. En particulier, F n’est pas isomorphe a Fr comme module de persistance.

Puisque tout sous-ensemble de R héritant d’une structure d’ensemble partiellement ordonné, nous
avons immédiatement une notion de modules et objets de persistance pour tout sous-ensemble de R.
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Et par ailleurs, tout objet persistant sur R induit une telle structure par restriction. Notons que si
S C R est discret, on peut étendre tout module de persistance F' sur .S en un module sur R en prenant
pour t € [s, §'[, avec s, s’ deux éléments consécutifs de S, F(t) = F(s) et en étendant les morphismes
de structure par I'identité sur [s, s'I.

Exemple 1.1.4 (Espaces de persistance). Soit (X (t))ier une famille d’espaces topologiques tels que
pour s < t on ait X(s) C X(t). Alors cette collection (X (s), X (s) — X(t))s<t définit un espace
topologique de persistance. On remarque que les exemples de sous-niveaux de fonction et de réunion
de boules de lintroduction sont précisément de cette nature. Et que tout espace filtré au sens usuel
Uest également (pour le sous-ensemble N de R). De méme, un complexe simplicial filtré FoX C --- C
FoX C--- est un complexe simplicial de persistance modélé sur N.

Exemple 1.1.5 (Module de persistance associé a un espace de persistance). Soit (X (t))ier une
famille d’espaces topologiques telle que pour s <t on ait X(s) C X(t). Notons ts<¢ : X (s) — X (t) les
inclusions. Alors, en prenant les groupes d’homologie en degré i, on obtient des applications linéaires

Hi(ts<t, F) : Hi(X(s),F) - H;(X(t),F) qui font de
(Hi(X(t)a]F)aHi(Lsgt;F))&t

un module de persistance (car prendre les groupes d’homologie est un foncteur). On notera que bien que
Ls<t 801t une inclusion, on n’a aucune propriété particuliere pour les morphismes induits en homologie.

On appelle aussi ce module de persistance I’homologie persistante de (X (t));.

Notons qu’une construction similaire a I’exemple précédent fonctionne pour tout espace topologique
de persistance (autrement dit un objet de persistance dans la catégorie des espaces topologiques), ou
pour tout complexe de chaines de persistance.

Remarque 1.1.6. La remarque naive est ici que tout foncteur C — D induit un foncteur des C-objets
de persistance vers les D-objets de persistance, par simple composition de foncteurs.

Exemple 1.1.7 (Sous-niveaux). Soit X un espace topologique et f : X — R une application continue.
Le sous-niveau (ouvert) de hauteur t est la préimage X/ (t) := f=1(] — 0o, t]). On a en particulier que
X1 (s) c X/ (t) si s <t. D’aprés Uexemple 1.1.5, on a pour tout i € N du module de persistance

Hi(X (1), F)
appelé module de persistance en degré i de f.
Donnons maintenant un exemple clé en lien avec I'approximation discrete d’un sous-espace.

Exemple 1.1.8 (Module de Cech). Soit X un sous-ensemble d’un espace métrique (Y,d) et soit r > 0.
On construit un compleze simplicial (abstrait) (f(XT) dont les sommets sont les points de X. L’ensemble
A™(X;) des n-simplezes de C(X;) est 'ensemble des (n+1)-uplets {xo, ..., z,} de points de X tels que
n
ﬂ B(x;,r) # 0.
=0
Par convention on pose C(X,) = 0 pour r < 0.
Pour tout v < 1/, ’ensemble é(XT) est un sous-complexe simplicial de é(XT/). En passant aux
groupes d’homologie simpliciale, on obtient pour tout entier naturel i un module de persistance

H,C(X) = (Hi(C(X,).F))

r

dont les morphismes structuraux sont induits par les inclusions.
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Cet espace a une autre interprétation. Il s’agit en fait d’une abstraction combinatoire de la réunion
des boules de rayon r dont les centres sont les points de X.

Proposition 1.1.9. Soit X C R™. Alors la réalisation géométrique du complexe de Cech |C(X,)| est
homotope d \Jyex B(z,7) et le diagramme suivant est commutatif d homotopie prés :

|CV(XT) | — |é(Xr’) |

~

UxEX B(a:, 7’) — UmEX B(JI, T/)'

Notons que si X est fini, alors pour r petit, ’homologie persistante est concentrée en degré 0 et y
est engendré par les points de X ; et pour r grand, C(X,) est homotope & une boule et donc contractile.
L’information intéressante réside dans les transformations qui se présentent entre ces deux extrémes.

~

1.2
STRUCTURE DES MODULES DE PERSISTANCE

Etant donnée une catégorie de foncteurs a valeurs dans les espaces vectoriels, la catégorie des
modules de persistance hérite de limites et colimites (donc de produits et coproduits). En particulier
nous avons la notion de somme directe M @& N de deux modules de persistance M, N :

(M@®N)(t)=M(t)®N(t), (MoN)(s) M (M & N)(t).

Nous notons simplement 0 le module de persistance qui vaut 0 en tout point.

Définition 1.2.1 (Module décomposable). On dit qu’un module persistant M est décomposable s’il
est isomorphe a une somme directe N1 @ No avec N1, No # 0. Sinon on dit qu’il est indécomposable.

Lemme 1.2.2. Les modules d’intervalle sont des objets injectifs dans la catégorie des modules de
persistance p.f.d., i.e., tout sous-module isomorphe a un module d’intervalle est un sommand direct.

Démonstration. Soit ¢ 'injection de Fy dans M, alors colimy¢ : colim;F; = F — colim; M est aussi
injective. On a alors § : colim; M — F tel que g o colimy ¢ = id. On définit alors g, : M, — (F), par

la composition M, — colim; M 9y (F7)y six €I et g, = 0 sinon, on a alors g ot = id. d

Lemme 1.2.3. Soit M un module persistant tel que M, # 0 pour tout x € I. Si ¢!, est injectif pour
tout t > a, alors Fy est sommand de M. Dualement, ceci reste vrai si ¢ est surjectif pour tout t > a.

Démonstration. Soit p € I tel que dim M, est minimal, prenons m, € M), \ {0}. Pour tout ¢ € I,
il existe ¢ € I tel que p,q > c. On a alors dim M. = dim M,, et donc ¢? est un isomorphisme. On
définit my == ¢2((#P)"1(m,)) € My, ceci ne dépend pas du choix de c. Ces éléments m,, définisent une
inclusion de F; vers M, et on conclut par lemme 1.2.2. ]

Les modules de persistance ont une décomposition trés simple en indécomposables :
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Théoréme 1.2.4 (de structure des modules persistants [CO20, BCB20]). Soit M un module de
persistance p.f.d., i.e. pour tout t € R,dim M (t) < co. Alors M se décompose sous la forme

ot B(M) est un multi-ensemble d’intervalles. La décomposition est unique & isomorphisme prés et d
lordre prés des termes dans la somme directe.

Par un multi-ensemble on entend un ensemble avec répétition possible de chaque intervalle.

Définition 1.2.5 (Code-barres). Le code-barres d’un module de persistance M est le multi-ensemble
d’intervalles B(M) donné par le théoréeme de décomposition.

Le code-barre est une donnée combinatoire tres simple qui caractérise complétement tout module
de persistance p.f.d.. En particulier, cette donnée est facilement stockable informatiquement.

Démonstration du théoréme 1.2.4. L’argument pour 1'unicité est standard. Par un argument de type
de Zorn, on peut montrer que M se décompose en somme des modules indécomposables. Il reste a
montrer que les modules indécomposables. Supposons donc que M est indécomposable. On suppose
que le support I. I est un intervalle par indécomposabilité.

On cosidere d’abord le cas inf I =: a € I. Prenons x € M,, alors N (t) = ¢'(zR) est un sous-module
de M qui est isomorphe a un module d’intervalle, le résultat suist donc par lemme 1.2.2.

Pour le cas général, on montre que les morphismes ¢¥ sont surjectifs pour tout z < y. Soit
N un sommand indécomposable de M>,. Si N, = 0, alors N est en fait un sommand de M, une
contradiction! Ainsi, M>, se décompose en somme des modules d’intervalles qui contiennent z. Donc
es morphismes ¢¥ sont surjectifs pour tout z < y. Et on conclut par lemme 1.2.3. O

Exemple 1.2.6. Le module de persistance F de l'exzemple 1.1.3 se décompose comme F = F_ 0,0 ®
)0, +00[- Donc il a pour code-barre {] — 00, 0],]0, +o0}.

1.3
DISTANCE ENTRE MODULES DE PERSISTANCE

Dans les applications pour 'analyse des données, un point fondamental est de pouvoir comparer
a quel point des modules de persistance sont proches I'un de l'autre. Par exemple, si le module de
persistance associé a une discrétisation d’un espace est proche de celui de ’espace en question ?

La structure persistante permet de définir une notion de distance entre les objets persistants. Par
ailleurs, elle peut se transférer sur le code-barre, permettant de la calculer d’une maniere algorithmique.

La distance induite par la structure persistante a un sens pour les espaces vectoriels et plus géné-
ralement pour des objets de persistance dans toute catégorie. Elle est basée sur la notion de décalage.

Définition 1.3.1 (Décalage d'un objet persistant). Soit F : RS — C un objet persistant dans C et
soit € > 0. On note le décalage de longueur ¢ de F par Fle] : RS — C l'objet persistant défini comme

suit : Fle](t) = F(t +¢€) et, pour s <t, le morphisme structuré LSFS[‘? : Flel(s) — Fle|(t) est donné par

Lfg[at] = L§+5§t+€ : Flel(s) = F(s+¢) = F(t+¢) = Fle|(¢).
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De facon similaire, si f : F'— G est un morphisme de modules de persistance, on pose

el = (FEl)) = Fe +6) 25 Gle v = GE))
teR
Pour tout € > 0, Fe] est un objet de persistance de C et (F — Fle],f — f[e]) est un en-

dofoncteur de la catégorie des objets de persistance de C. De plus, la collection de morphismes
(A%HE cF(t) — F(t+ E))teR est un morphisme de modules de persistance F' — F[¢], que I’on notera
Fle] et appellera morphisme de décalage de longueur e. Pour tout ¢’ > 0, on a 7¥[e]or!'[¢/] = 78 [e+£/].

T gloT

Définition 1.3.2 (Distance d’entrelacement). Soit C une catégorie. Soient F,G : RS — C des objets
persistants. On dit que F et G sont e-entrelacés s’il existe pu : F — Gle| et v : G — Fle| tels que
7F2e] = vie] o p et 7¢[2¢] = ple] o v. On appelle distance d’entrelacement entre F et G linfimum

di(F,G) :=inf{e > 0| F' et G sont e-entrelacés} € Ry U {oo}.
Lemme 1.3.3. La distance d’entrelacement est une pseudo-distance :
di(F,G)>0 et di(F,H)<d;(F,G)+d;(G,H).
Notons que la distance d’entrelacement a du sens pour n’importe quelle catégorie C.

Lemme 1.3.4. Si U : C — D est un foncteur, alors le foncteur induit Pers(C) — Pers(D) est 1-
lipschitzien : pour toute paire (F,G) : RS — C d’objets C-persistants, on a

di(Vo F,¥o@G)<d;(FG).
Le lemme s’applique en particulier pour les foncteurs groupes d’homologie H;(—,F).

Exemple 1.3.5 (Décalage d'un module intervalle). Soient E un F-espace vectoriel et I = (a,b) un
intervalle (ou on wutilise (,) pour ne pas préciser si les bornes sont ouvertes ou fermées). Le décalage
par € du module intervalle Er est Er[e] = E4—cp—c). Cest donc le méme module, mais porté par la
translation de € sur la droite de lintervalle I. On remarque que le morphisme de décalage naturel
Fr — Frle] est nul sie >b—a et non nul sie < b—a. On peut en déduire le résultat suivant.

Lemme 1.3.6. On a dj(Fq,0) = bT et di(Fiapy,Fy) = 0 pour tout intervalle J avec les mémes
extrémités que I. De plus, di(F i, ), Fy) = +00 si J est non borné.

La distance entre deux modules de persistance indécomposables dépend de la taille des intervalles
et de la comparaison entre les extrémités des intervalles. Le théoréme de structure 1.2.4 suggere alors
de transférer la distance entre modules de persistance vers leurs code-barres. Soient A, B des (multi)-
ensembles de barres (intervalles de R). Si I est un intervalle, on notera s; < ¢; ses extrémités.

Définition 1.3.7 (Correspondance partielle). Une correspondance partielle entre A et B, notée A g
B, est la donnée d’un sous-ensemble G C A X B tel que les projections naturelles G — A et G — B
soient injectives. On dira qu’un élément (I,J) € G est une paire accouplée et a contrario qu’un élément
I € A]] B qui ne correspond pas d une paire accouplée est un élément non accouplé.

A toute correspondance partielle G C A x B, on associe son coit :

— st (I,J) € G, le coit de (I,J) est c(L,J) = ||(s1,tr) — (57,t5)||cc ;

— si K € A]] B est une barre non accouplée, le coit de K est ¢(K) = |SK2;'5K| ;
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— le cotit total de G est
c(G) :==max(c(I,J),c(K), sur (I,J) paires accouplées, K non accouplée).
Définition 1.3.8 (Distance bottleneck). Soient A, B des code-barres. La distance bottleneck
dpn(A, B) := inf (¢(G)),
ASB
la borne inférieure étant prise sur les correspondances partielles entre A et B.
Un point clé dans les applications est que la distance bottleneck peut se calculer algorithmique-

ment via des algorithmes efficaces d’appariement. Le théoréme suivant permet de calculer la distance
d’entrelacement en termes de la distance bottleneck.

Théoréme 1.3.9 (Isométrie, [BL15]). Soient M, N deuzx modules de persistance p.f.d., alors
di(M,N) = dp, (B(M),B(N)).

Démonstration. Montrons d’abord dy, (B(M),B(N)) > dj(M, N). Prenons € > dy,(B(M),B(N)), il
existe une correspondance partielle dont le cofit est inférieur a e, et on va construire un e-entrelacement.
Pour les intervalles non accouplés, on impose 'application nulle. Pour (I, J) € G, on impose entre F;
et F; les application id sur I N J et 0 ailleurs. Ceci donne bien un e-entrelacement.

La démonstration de dp,(B(M),B(N)) < dj(M,N) s’appuie sur les correspondances induites
[BL15]. Nous allons d’abord construire une action non canonique (au sens non fonctorielle) des mor-
phismes f : M — N sur les codes-barres B(M) et B(N).

Supposons d’abord que f est une surjection. Nous construisons ’action sur les codes-barres comme
suit : Pour tout b € R, on trie les intervalles dans B(M) comme (b,d1] D (b,d2] D --- D (b, dy] par
ordre décroissant. De méme pour B(N) : (b, ¢1] 2 (b, 2] D -+ - D (b, ck]. Puis on apparie ces intervalles
via le principe « longest first », obtenant un matching pugyy B(M ) — B(N).

Proposition 1.3.10. im pgy, = B(N) et psur (b, d] = (b, €] implique d > e.

Sit: M — N est une injection, nous construisons l’action sur les codes-barres par dualité, donc
Proposition 1.3.11. im(,ui;jl) =B(M) et pinj(b, d) = (¢, d] implique ¢ <b.

Si f: M — N est un morphisme quelconque, on le décompose comme M Z im f = N, puis
on obtient les correspondances figyy : B(M) — B(im f) et pinj : B(im f) — B(N). On remarque que
im pgyy = B(im f) = im(ui;}), et donc on peut définir pu(f) = ftinj © fhsur-

Décomposons f : V — W] comme deux applications M % im f - N[J].

Lemme 1.3.12. On a les propriétés suivantes pour psu:(f), et les résultats analogues sur pini(f) :

1. im(pugl) contient les intervalles de B(M) de longeurs au moins 25.
2. Si pgur envoie (b, d] sur (b,d'], alors d' € [d — 24,d]

Etant donné un d-entrelacement (f, g), nous avons un matching ¥; : B(N[6]) — B(NN) obtenu en
décalant chaque barre. Considérons maintenant le matching p = p(f) et formons la composition

B(M) == Houry B(im f) — Hini, B(N[d)) ﬁ>B(N).
Suivons le parcours d’une barre sous cette application :
(b d] Nsur (b, d/] Hinj (b/ d/] (b/+5 d/+5]

D’aprés lemme 1.3.12, toute barre de longeur au moins 2§ est appariée; d — 26 < d’ < d et
b—25 <V <b. Ainsi, |(b/ +0) —b| < et |(d +J)—d| <. On a bien une d-correspondance. O
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1.4
STABILITE

Une question élémentaire qui se pose est de savoir si la notion de distance d’entrelacement entre
modules de persistance associée a des objets géométriques est « continue » en un sens a préciser.
La réponse est donnée par les théoremes « de stabilité », qui justifient I'utilisation des modules de
persistance dans les applications associées aux exemples 1.1.7 et 1.1.8.

On commence par les modules de persistance associés aux sous-niveaux d’une fonction. On dira
quune fonction f : X — R est p.f.d. si son module de persistance associé H;(X7) est p.f.d.. Clest
toujours le cas en pratique pour des fonctions associées a des données finies.

Notons que si ||f — glleo < €, alors les espaces persistants X7/ et X9 sont e-entrelacés puisque
f(z) < t implique g(x) < t + € et symétriquement. Le lemme 1.3.4 et le théoreme d’isométrie 1.3.9
impliquent alors le résultat suivant.

Théoréme 1.4.1 (Théoreme de Stabilité I). Soient f,g: X — R des fonctions p.f.d., B,(f) et B,(g)
les code-barres associés a l’homologie persistante en degré n des leurs sous-niveaux. On a

dbn(Bn(f)aBn(g)) < ”f _gHoo-

Passons au cas des complexes de Cech Exemple 1.1.8).
Rappelons que si K, L sont deux sous-espaces compacts d'un espace métrique (Y, d), alors leur
distance de Hausdorff est

e

dy (K, L) = max (ma;)(( d(z, L), I;leai( d(y,K)) .

Si maintenant K et L sont des espaces métriques compacts abstraits, on a la généralisation suivante.
Appelons plongement isométrique (X,d) — (Y, d’) une application continue entre espaces métriques
qui est un homéomorphisme sur son image et une isométrie.

Définition 1.4.2 (Distance de Gromov-Hausdorff). Soit K, L deux espaces métriques compacts. Leur
distance de Gromov-Hausdorff est

dgn(K,L) = inf dy(vx(K),vo(L))

ZYK YL

ol Vi, VL sont des plongements isométriques de K et L dans un méme espace métrique Z.

La distance de Gromov-Hausdorff que nous donnons ici differe de certaines conventions par un
facteur de 2. Le deuxieme théoreme de stabilité énonce :

Théoréme 1.4.3 (Théoreme de Stabilité II [CSO14]). Soient X,Y deux espaces métriques compacts.
On note By, (X) et B, (Y) les code-barres associés a I’homologie persistante en degré n des complezes
de Cech associés. Pour tout entier n, on a

dyn(B(X), B(Y)) < don(X,Y).

Les théoremes de stabilité suggerent que les petites barres dans un code-barre représentent du
bruit, au sens ou les changements de topologie (manifestés par la distance de la convergence uniforme
ou la distance de Gromov-Hausdorff) ne sont perceptibles que par les grandes barres a priori.



Chapitre 2
Homotopie Persistante

Une question naturelle est de savoir si on peut établir des résultats homotopiques sur les espaces
persistants, analogues de ceux de la c6té homologique.

Définition 2.0.1. Pour toute petite catégorie L et des foncteurs X,Y : I — Top, nous disons qu’une
transformation naturelle f: X — Y est une équivalence faible (objet par objet) si fo: X, — Y, est
une équivalence d’homotopie faible (induit des isomorphismes sur les groupes d’homotopie) pour tout

a € obZ. Nous notons
X =Y

une équivalence faible objet par objet de X versY . Nous disons que X etY sont faiblement équivalents,
et écrivons X ~Y | s’il existe un zigzag d’équivalences faibles objet par objet

4%} e
N N
X W2 an 1

W
N
Y.

Ceci est clairement une relation d’équivalence sur les objets, mais elle est peu maniable. Comme
nous ’expliquons dans la section 2.2, X ~ Y si et seulement s’il existe un zigzag de la forme suivante :

Pour obtenir un résultat homotopique, nous souhaitons identifier une distance d sur les R-espaces
satisfaisant les conditions suivantes :

1. Aziome de stabilité. Pour tout X € ob Top et fonctions v,x: X — R,
d((X7(8))e, (X™(8))e) < N7 = Klloos

2. Aziome d’invariance par homotopie. d(X,Y) =0 dés que X ~ Y (définition 2.0.1).
3. Axiome de bornitude en homologie. Pour tout i > 0 et espaces persistants X,Y avec H; X et
H;Y p.fd.,
don(BUH:X), B(H:Y)) < d(X,Y).
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2.1
DISTANCE D’ENTRELACEMENT D’HOMOTOPIE

La distance d’entrelacement dy (Définition 1.3.2) au niveau des espaces persistants est stable et
bornée en homologie, mais n’est pas invariante par homotopie (considérer X = {0}r et Y = Rg), et
ne satisfait pas (2.1). Nous définissons les entrelacements d’homotopie et la distance d’entrelacement
d’homotopie dgy sur les espaces persistants en modifiant la définition de d; pour imposer ’axiome
d’invariance par homotopie.

Nous introduisons maintenant notre généralisation homotopique des entrelacements.

Définition 2.1.1. Pour § > 0, nous disons que des R-espaces X etY sont J-entrelacés par homotopie
sl existe des R-espaces X' ~ X et Y' ~Y tels que X' et Y' sont d-entrelacés.

Définition 2.1.2. La distance d’entrelacement d’homotopie entre les espaces persistants X et'Y est
dpr(X,Y) :=inf {§ | X,Y sont d-entrelacés par homotopie}.

Théoréme 2.1.3. dyp est une distance sur les espaces persistants satisfaisant les axiomes de stabilité,
d’invariance par homotopie et de bornitude en homologie.

Preuve partielle de 2.1.3. 1l est clair que dyp est symétrique et non négative, et que pour tout espace
persistant X, dygr(X, X) = 0. Pour établir que dyy est une distance, il suffit alors de vérifier que dp
satisfait I'inégalité triangulaire ; nous vérifions ceci dans la section 2.3 ci-dessous.

Il est facile de vérifier que dyy est stable et invariante par homotopie. Une équivalence faible entre
espaces persistants X, Y induit un 0-entrelacement entre H; X, H;Y , et comme noté précédemment, un
d-entrelacement entre X, Y induit un d-entrelacement entre H; X, H;Y. A partir de ces observations,
de l'inégalité triangulaire pour d; sur les modules de persistance, et du théoréme 1.3.9, nous avons
que dyp est bornée en homologie. O

Alors qu’il est trivial de montrer que dj satisfait I'inégalité triangulaire, notre preuve de 'inégalité
triangulaire pour dyr nécessite du travail. Notre argument revient a montrer que certaines des appli-
cations internes dans une certaine extension de Kan sont des équivalences d’homotopie faibles. Etant
donné I'inégalité triangulaire pour dyy et le théoréme de stabilité algébrique, le reste de la preuve du
théoréme 2.1.3 est trivial.

Nous remarquons que théoreme 1.4.3 peuvent étre formulés au niveau des espaces en utilisant
la distance d’entrelacement d’homotopie, pour toute distance satisfaisant nos axiomes de stabilité et
d’invariance par homotopie.

Théoréme 2.1.4. Pour toute distance d stable et invariante par homotopie sur les espaces persistants,
pour tous espaces métriques P et @,

d(C(P),C(Q)) < dgu(P, Q). (2.1)

Les théoremes 2.1.4 et 2.1.3 nous disent alors en particulier que dyy satisfait (2.1).
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2.2
UN PEU DE THEORIE DES CATEGORIES

Dans cette section, nous passons brievement en revue les idées standards de la théorie des catégories
dont nous aurons besoin dans le reste : les extensions de Kan et les catégories de modeéles.

Définition 2.2.1. Une extension de Kan (& gauche) d’un foncteur F: C — E le long d’un foncteur
G:C — D est un foncteur LoaF: D — E

c -t E

| A

muni d’une transformation naturelle n: F' = LqF oG qui est universelle au sens que pour toute autre
paire (H: D — E,v: FF = H o G), v se factorise de maniére unique par 1.

Dans le cas ou C est petite et E est cocomplete, 'extension de Kan a gauche existe.

Définition 2.2.2. Une catégorie de modeles est une catégorie C compléte et cocompléte, munie de
trois collections distinguées de morphismes dans C, appelées les équivalences faibles, fibrations et
cofibrations, satisfaisant les quatre axiomes ci-dessous. Nous disons qu’une (co)fibration est acyclique
si elle est aussi une équivalence faible.

1. Les équivalences faibles contiennent tous les isomorphismes et satisfont la « propriété des 2/3
» : pour des morphismes f: X =Y et g: Y — Z, si deux quelconques parmi f, g, go f sont
des équivalences faibles, alors la troisieme [’est aussi.

2. Les équivalences faibles, cofibrations et fibrations sont stables par rétracte; c’est-a-dire, s’il
existe un diagramme commutatif

X Y X
e
X’ Y’ X'

ot les composées horizontales sont l'identité et g appartient a la classe, alors f y appartient
aussi.

3. Dans le carré commutatif
A—— X

f

NS}

B—Y,

si f est une cofibration, g est une fibration, et (au moins) l'une d’elles est acyclique, alors il
existe un relévement B — X qui rend le diagramme commutatif.

4. Tout morphisme dans C se factorise fonctoriellement comme composition d’une cofibration
suivie d’une fibration acyclique ou composition d’une cofibration acyclique suivie d’une fibration.
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Le fait standard suivant nous sera utile dans notre preuve de 'inégalité triangulaire pour dy.

Proposition 2.2.3 ([DS95, Proposition 3.14]). Etant donné un carré cocartésien dans C,

A— X

fl ig

B——Y,

si f est une cofibration (acyclique), alors g l’est aussi. Le résultat dual (limites inverses et fibrations)
est également vrai.

Puisqu’une catégorie de modeles C est compléte et cocompléte, elle a un objet initial () et un objet
final *. Nous disons que X € obC est cofibrant si 'unique morphisme () — X est une cofibration ; dua-
lement, un objet est fibrant si I'unique morphisme X — x est une fibration. L’application de I’axiome
de factorisation fonctorielle ci-dessus aux morphismes () — X donne un foncteur de remplacement
cofibrant Q: C — C avec chaque QX cofibrant, et une transformation naturelle  — Id¢ qui est une
fibration acyclique sur chaque objet de C.

Exemple 2.2.4. Dans la structure de modeles standard sur Top, les équivalences faibles sont les
équivalences d’homotopie faibles et les fibrations sont les fibrations de Serre ; les cofibrations sont alors
déterminées da partir des fibrations acycliques par les axiomes des catégories de modeéles. Dorénavant,
les équivalences faibles, fibrations, et cofibrations d’espaces topologiques seront entendues comme celles
de la structure de modéles standard. Cette catégorie de modéles est engendrée de maniere compacte,
ou les cofibrations génératrices sont les inclusions de bords S?~' — D" ; les objets cofibrants sont des
rétractes de complexes cellulaires, et les cofibrations dans la structure de modéles standard admettent
une description concréte, comme rétractes d’inclusions CW généralisées [DS95].

Exemple 2.2.5. Pour toute petite catégorie I, il existe une structure de catégorie de modéles sur
Top?, la structure de modeles projective, pour laquelle les équivalences faibles sont les équivalences
faibles objet par objet et les fibrations sont les fibrations objet par objet [Hir09, Section 11.6]. Pour
la plupart des choix de I, les cofibrations objet par objet ne sont pas nécessairement des cofibrations.
Cependant, il est simple de vérifier que si X € Top’ est cofibrant, alors chaque objet dans X est
cofibrant, et chaque application interne dans X est une cofibration. Tous les objets sont fibrants dans
la structure de modeles standard sur Top, donc tous les objets de Top” sont fibrants dans la structure
de modeles projective.

Catégories d’homotopie On peut construire la catégorie d’homotopie associée Ho(C) de toute
catégorie de modeles C [DS95, Définition 5.6]. La catégorie Ho(C) a la méme collection d’objets que C
et est munie d’un foncteur II€: C — Ho(C) qui est I'identité sur les objets. II¢ est la localisation de C
par rapport aux équivalences faibles [DS95, Théoreme 6.2]), c’est-a-dire qu’il envoie les équivalences
faibles sur des isomorphismes, et pour tout foncteur F': C — D ayant cette propriété, il existe un
unique foncteur G: Ho(C) — D tel que le diagramme suivant commute :

c—t .p
e %

Ho(C)
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En particulier, & équivalence de catégories pres, Ho(C) ne dépend que des équivalences faibles de C, et
non des (co)fibrations. Nous notons

X =Y
une équivalence faible de X vers Y. Nous disons que X et Y sont faiblement équivalents et écrivons
X ~Y si X,Y € obC sont isomorphes dans Ho(C).

Le fait que II¢ soit une localisation implique que X ~ Y si et seulement s’il existe un zigzag
d’équivalences faibles dans C connectant X et Y. Ainsi, deux diagrammes d’espaces sont faiblement
équivalents par rapport a la structure de modeles projective si et seulement s’ils sont faiblement
équivalents au sens de définition 2.0.1. En fait, on peut vérifier que dans toute catégorie de modeéles
C, X ~ Y si et seulement s’il existe un diagramme d’équivalences faibles

Zy < Zo
X Y.
De plus, il est facile de vérifier que si soit tous les objets de C sont fibrants, soit tous sont cofibrants,
alors X ~ Y si et seulement s’il existe des équivalences faibles

~ Z ~
=, =
b Y.

En particulier, ceci s’applique a la structure de modeles projective, dont tous les objets sont fibrants.

2.3
L’'INEGALITE TRIANGULAIRE

Dans cette section, nous prouvons I'inégalité triangulaire pour dyi, complétant ainsi la preuve du
théoreme 2.1.3. Il suffit de montrer que si W et X sont Jd-entrelacés par homotopie et X et Y sont
e-entrelacés par homotopie, alors W et Y sont (6 + €)-entrelacés par homotopie.

Définition 2.3.1. Nous définissons une catégorie marquée comme étant une catégorie finie et mince
Z munie d’une application m : S — [0,00), ot S est un sous-ensemble de ’ensemble des paires non
ordonnées d’objets isomorphes dans Z. Pour simplifier la notation, nous écrirons m({a,b}) comme
m(a,b). Nous notons une paire {a,b} € S avec m(a,b) = 9§ de la maniére suivante :

a 5
Définissons 7, la catégorie d’entrelacement de la catégorie marquée Z, comme la catégorie mince avec
obZ =obZ x R et homZ engendré par l’ensemble de fleches

{(a,r) = (b,r) |r € R, a— b€ hom(Z), {a,b} & S}
U{(a,r) = (b,r + m(a,b)) | r € R, {a,b} € S}.
Définissons un diagramme d’espaces persistants indexé par Z comme un foncteur F : T — Top. F se
restreint en un R-espace F, pour chaque a € obZ, en une transformation naturelle F,p : F, — F,

pour chaque a — b € hom(Z) avec {a,b} & S, et en un m(a,b)-entrelacement entre F, et Fy pour
chaque {a,b} € S.
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Soit I la catégorie marquée suivante :

/'\,z

Si W et X sont d-entrelacés par homotopie et X et Y sont e-entrelacés par homotopie, alors en utilisant
le fait que ~ est une relation d’équivalence sur les R-espaces, il existe un diagramme F' de R-espaces
indexé par I tel que F ~ W, F, = Y, et les deux fleches diagonales sont des équivalences faibles. En
prenant un remplacement cofibrant de F', nous pouvons supposer que F' est cofibrant.

Soit J I'extension marquée suivante de I :

/\gd

J
5
c 5

a

- 1
-
e d

et soit ¢ : I < J Vinclusion de catégories. L’inclusion ¢ induit un foncteur d’inclusion 7 : I < J.

Puisque nous supposons F' cofibrant, L3 F' calcule I'extension de Kan gauche de F' le long de .
Pour établir que W et Y sont (6 + €)-entrelacés par homotopie, il suffit de prouver la proposition
suivante ; 'entrelacement par homotopie (§ + €) désiré est alors donné par composition.

Proposition 2.3.2. Les morphismes Lac : La — Lc et Ly g : Ly — Lq sont des équivalences faibles.

Démonstration. On montre que La ¢ est une équivalence faible; I'argument pour Ly, g4 est le méme.
On montre d’abord que pour chaque r € R, {(e,r), (f,7),(g,r), (h,7)} est un carré de pushout.
Puisque F' est cofibrant, l’application Fig ) (g €st une cofibration ; par hypothese, c’est en fait une co-
fibration acyclique. Ainsi, proposition 2.2.3 implique que L(¢ ;) () est aussi une cofibration acyclique.
Ceci est vrai pour tout r, donc Ly, est une cofibration acyclique objet par objet.
Le méme argument montre que pour tout r € R, {(a,r), (f,7—9), (c,r), (h,r — )} est un carré de
pushout. Alors L, ¢ est une cofibration acyclique objet par objet car Lgp, 'est. O

2.4
THEOREME DE WHITEHEAD PERSISTANT

Dans cette section, nous considérons l'idée de comparer des objets dans Top® en utilisant des
entrelacements dans Ho(Top)®. Nous définissons la distance d’entrelacement dans Ho(Top)® par dyc ;
d’apres le lemme 1.3.4, nous avons dgy > dpc. Nous nous demandons si I'inverse de cette inégalité est
vrai (& un facteur constant pres). Lanari et Scoccola [LS20] donnent une réponse positive.

Théoréme 2.4.1 ([LS20], Théoreme A). Soit M une catégorie de modéles cofibrante générée, et
X, Y € MR, alors dy1(X,Y) < 2duc(X,Y).
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Une catégorie de modeles est dite cofibrante générée s’il existe un petit ensemble de cofibrations
ainsi qu'un ensemble de cofibrations acycliques, tels que toutes les autres (co)fibrations (acycliques)
sont générées a partir de celles-ci en un certain sens. Des exemples de catégories de modeles cofibrantes
générées sont la structure de modele de Kan-Quillen sur les ensembles simpliciaux et la structure de
modele de Quillen sur les espaces topologiques, cf. [Hov99].

L’exemple suivant montre que le théoréme ne tient pas sans I’hypotheése de génération cofibrante.

Exemple 2.4.2 ([BL23]). Pour chaque n € {1,2,...}, nous définissons
S x 8% x - x §*  pourr e [2i,2i+2), i €{0,1,...n}

Y;n = 2n—1% copies
* pour r € (—o00,0) U [2n + 2,00),

Pour i > 0, nous avons une application

2i+1

5% % 8% 5 827 = 62" A S,

donnée en écrasant S Vv 8% C 8% x S% en un point; ici V et A désignent respectivement le produit
en bouquet et le produit smash. Pour i € {0,1,...n— 1}, r € [2i,2i +2) et s € [2i + 2,2i + 4), nous
prenons l'application interne Y,"s comme le produit de 2n=i=1 copies de cette application. Les autres
applications internes dans Y™ sont spécifiées par composition.

Par exemple, en considérant le tore ST x S1 comme un quotient d’un carré de la maniére usuelle,
Uapplication Yol,Q: St x 81— S2 est celle induite en envoyant tout le bord du carré en un seul point,
et Uapplication Yo2,23 St x ST x 81 x St — 52 x 82 est égale a Y()I,Q X YOI’Q.

Pour tout i, Uapplication S* v 82" < S2" x 8% induit une surjection sur tous les groupes d’homo-
topie. Ainsi, m;Y,", o est trivial pour tout v € R et i > 0. En définissant X' par X| = % pour tout r, il
s’ensuit que les morphismes triviaur X' — Y"™(1) et Y™ — X'(1) induisent des 1-entrelacements sur
tous les groupes d’homotopie persistants basés.

Cependant, X' et Y™ ne sont pas d-équivalents par homotopie pour tout § < n + 1. Pour le voir,
supposons que toutes les spheres dans la définition de Y™ sont munies de la structure CW minimale
usuelle, et remarquons que Y," = S2" pour r € [2n,2n + 2). L’application Yy, agit en écrasant le
(2™ — 1)-squelette de Y§' en un point, donc il résulte d’un calcul facile d’homologie cellulaire que
Hon(Y™)o, # 0. Ainsi, Hon(Y™) et le module trivial Hon(X') ne sont pas d-entrelacés. Il est facile
de vérifier qu’une é-équivalence d’homotopie entre R-espaces A et B induit un d-entrelacement entre
H;A et H;B pour tout i. Par conséquent, X' et Y™ ne sont pas §-équivalents par homotopie, comme
affirmé. D’autre part, X' et Y™ sont strictement (n + 1)-entrelacés, via des morphismes triviauz.

Nous construisons ensuite Y' tel que les morphismes triviaux X' — Y'(1) et Y — X'(1) induisent
des 1-entrelacements sur tous les groupes d’homotopie persistants basés, mais H; X' et H;Y' ne sont
pas e-entrelacés pour aucun € fini. Pour ce faire, nous assemblons simplement les parties non triviales
de chaque Y™, en prenant chaque morphisme entre des espaces de deur Y™ différents comme trivial ;
c’est-a-dire, nous prenons Y, :=Y,} pour r € (—o0,4), Y := Y2, pour r € [4,10), et ainsi de suite.

Enfin, nous prenons X et Y comme des remplacements cofibrants de X' et Y’, respectivement, et
soit f: X = Y (1) le remplacement cofibrant de l’application triviale X' — Y'(1).
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